A188593 Decimal expansion of (diagonal)/(shortest side) of a golden rectangle.
1, 9, 0, 2, 1, 1, 3, 0, 3, 2, 5, 9, 0, 3, 0, 7, 1, 4, 4, 2, 3, 2, 8, 7, 8, 6, 6, 6, 7, 5, 8, 7, 6, 4, 2, 8, 6, 8, 1, 1, 3, 9, 7, 2, 6, 8, 2, 5, 1, 5, 0, 0, 4, 4, 4, 8, 9, 4, 6, 1, 1, 2, 8, 8, 8, 6, 0, 3, 0, 6, 3, 4, 0, 1, 7, 0, 3, 8, 7, 0, 0, 3, 4, 3, 7, 5, 8, 5, 6, 2, 1, 9, 4, 1, 6, 2, 2, 7, 6, 3, 3, 5, 1, 7, 9, 9, 4, 3, 5, 1, 0, 2, 8, 0, 6, 0, 0, 8, 4, 1, 7, 9, 7, 4, 1, 3, 2, 3, 8, 7
Offset: 1
Examples
1.902113032590307144232878666758764286811397268251...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10001
- Michael Penn, On the fifth root of the identity matrix, YouTube video, 2022.
- Eric Weisstein's World of Mathematics, Golden Rectangle.
- Eric Weisstein's World of Mathematics, Pentagram.
- Index entries for algebraic numbers, degree 4.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt((5+Sqrt(5))/2); // G. C. Greubel, Nov 02 2018
-
Mathematica
r = (1 + 5^(1/2))/2; RealDigits[(2 + r)^(1/2), 10, 130][[1]] RealDigits[Sqrt[GoldenRatio+2],10,130][[1]] (* Harvey P. Dale, Oct 27 2023 *)
-
PARI
sqrt((5+sqrt(5))/2)
Formula
Equals 2*A019881. - Mohammed Yaseen, Nov 04 2020
Equals i^(1/5) + i^(-1/5). - Gary W. Adamson, Jul 08 2022
Equals Product_{k>=0} ((10*k + 2)*(10*k + 8))/((10*k + 1)*(10*k + 9)). - Antonio GraciĆ” Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024
Comments