cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322709 a(0)=0, a(1)=7 and a(n) = 30*a(n-1) - a(n-2) + 14 for n > 1.

Original entry on oeis.org

0, 7, 224, 6727, 201600, 6041287, 181037024, 5425069447, 162571046400, 4871706322567, 145988618630624, 4374786852596167, 131097616959254400, 3928553721925035847, 117725514040791821024, 3527836867501829594887, 105717380511014096025600, 3167993578462921051173127
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2018

Keywords

Comments

Also numbers k such that 7*A000217(k) is a square. - Metin Sariyar, Nov 16 2019

Examples

			(sqrt(8) + sqrt(7))^2 = 15 + 2*sqrt(56) = sqrt(225) + sqrt(224). So a(2) = 224.
		

Crossrefs

Row 7 of A322699.
Cf. A188932 (sqrt(7)+sqrt(8)).

Programs

  • Magma
    a:=[0,7]; [n le 2 select a[n] else 30*Self(n-1)-Self(n-2)+14: n in [1..18]]; // Marius A. Burtea, Nov 16 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 18); [0] cat Coefficients(R!(7*x*(1 + x) / ((1 - x)*(1-30*x + x^2))));  // Marius A. Burtea, Nov 16 2019
  • Mathematica
    LinearRecurrence[{31,-31,1}, {0, 7, 224}, 18] (* Metin Sariyar, Nov 23 2019 *)
  • PARI
    concat(0, Vec(7*x*(1 + x) / ((1 - x)*(1 - 30*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 25 2018
    

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(8) + sqrt(7))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(8) - sqrt(7))^n.
a(n) = 31*a(n-1) - 31*a(n-2) + a(n-3) for n > 2.
From Colin Barker, Dec 25 2018: (Start)
G.f.: 7*x*(1 + x) / ((1 - x)*(1 - 30*x + x^2)).
a(n) = ((15+4*sqrt(14))^(-n) * (-1+(15+4*sqrt(14))^n)^2) / 4.
(End)
E.g.f.: (1/4)*(-2*exp(x) + exp((15-4*sqrt(14))*x) + exp((15+4*sqrt(14))*x)). - Stefano Spezia, Nov 16 2019
2*a(n) = A068203(n)-1. - R. J. Mathar, Mar 16 2023

A188933 Continued fraction of sqrt(7)+sqrt(8).

Original entry on oeis.org

5, 2, 9, 5, 2, 687, 6, 4, 1, 2, 2, 1, 2, 3, 1, 1, 1, 1, 1, 317, 19, 1, 1, 1, 6, 3, 8, 11, 10, 7, 1, 1, 5, 2, 1, 14, 1, 35, 6, 6, 1, 7, 2, 4, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 2, 84, 1, 3, 1, 6, 2, 1, 1, 2, 3, 1, 1, 7, 1, 4, 1, 31, 9, 1, 3, 9, 7, 1, 3, 1, 1, 3, 1, 1, 62, 12, 1, 24, 2, 1, 4, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 3, 1, 3, 1, 10, 1, 1, 1, 14, 1, 1, 1, 2, 4, 1
Offset: 0

Views

Author

Clark Kimberling, Apr 13 2011

Keywords

Comments

For a geometric interpretation, see A188640 and A188932.

Examples

			sqrt(7)+sqrt(8)=[5,2,9,5,2,687,6,4,1,2,2,1,2,3,1,1,1,1,1,...].
		

Crossrefs

Cf. A188932 (decimal expansion).

Programs

  • Mathematica
    r = 28^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]

Extensions

Offset changed by Andrew Howroyd, Jul 08 2024
Showing 1-2 of 2 results.