cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A189041 Continued fraction for (e+sqrt(-4+e^2))/2.

Original entry on oeis.org

2, 3, 1, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 3, 3, 2, 1, 1, 1, 2, 23, 1, 1, 2, 33, 1, 1, 3, 1, 1, 20, 5, 40, 1, 3, 1, 25, 1, 2, 1, 26, 1, 6, 3, 1, 5, 5, 7, 1, 24, 5, 14, 1, 1, 2, 1, 8, 2, 1, 1, 10, 1, 1, 2, 1, 2, 2, 1440, 2, 17, 1, 1, 3, 4, 1, 18, 2, 1, 1, 1, 8, 1, 5, 1, 4, 18, 1, 3, 5, 1, 24, 3, 4, 1, 1, 4, 4, 1, 137, 3, 1, 1, 1, 6, 1, 1, 7, 1, 1, 2, 6, 1, 1, 5, 1, 2, 5, 7, 1, 3
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2011

Keywords

Examples

			(e+sqrt(-4+e^2))/2=[2,3,1,1,2,1,3,2,1,1,2,2,...]
		

Crossrefs

Cf. A189040 (decimal expansion).

Programs

  • Mathematica
    r = E; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]

Extensions

Offset changed by Andrew Howroyd, Jul 08 2024

A189042 Decimal expansion of (e-sqrt(-4+e^2))/2.

Original entry on oeis.org

4, 3, 8, 6, 7, 1, 4, 5, 5, 3, 4, 8, 5, 3, 2, 6, 0, 8, 7, 5, 8, 2, 7, 0, 5, 9, 4, 4, 3, 6, 4, 8, 9, 1, 3, 5, 4, 5, 7, 0, 3, 8, 6, 5, 7, 4, 7, 1, 4, 3, 9, 4, 3, 6, 7, 4, 8, 8, 7, 5, 5, 6, 1, 0, 1, 7, 0, 8, 8, 7, 6, 8, 1, 7, 5, 1, 8, 0, 7, 8, 5, 4, 4, 7, 0, 4, 5, 3, 4, 2, 1, 1, 1, 8, 4, 6, 4, 8, 2, 8, 1, 0, 3, 0, 9, 6, 8, 6, 0, 0, 5, 0, 4, 3, 7, 1, 7, 4, 8, 2, 3, 1, 6, 1, 1, 2, 2, 1, 2, 6
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2011

Keywords

Comments

Decimal expansion of the shape (= length/width = (e-sqrt(-4+e^2))/2) of the lesser e-contraction rectangle.
See A188738 for an introduction to lesser and greater r-contraction rectangles, their shapes, and partitioning these rectangles into a sets of squares in a manner that matches the continued fractions of their shapes.

Examples

			0.4386714553485326087582705944364891354570...
		

Crossrefs

Programs

  • Mathematica
    r = E; t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
  • PARI
    (exp(1)-sqrt(exp(2)-4))/2 \\ Charles R Greathouse IV, Apr 25 2016

Extensions

a(129) corrected by Georg Fischer, Apr 04 2020

A258898 a(1)=a(2)=1, a(n) = ceiling(e*a(n-1) - a(n-2)) for n>2.

Original entry on oeis.org

1, 1, 2, 5, 12, 28, 65, 149, 341, 778, 1774, 4045, 9222, 21023, 47925, 109251, 249051, 567740, 1294227, 2950334, 6725613, 15331778, 34950481, 79673480, 181624492, 414033077, 943834098, 2151574001, 4904750412, 11180919918
Offset: 1

Views

Author

Morris Neene, Jun 14 2015

Keywords

Comments

Ratio of consecutive terms approaches A189040, (e + sqrt(e^2 - 4))/2.

Examples

			a(2) = ceiling(e*1 - 1) = 2;
a(3) = ceiling(e*2 - 1) = 5;
a(4) = ceiling(e*5 - 2) = 12;
a(5) = ceiling(e*12 - 5) = 28.
		

Crossrefs

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Ceiling(Exp(1)*Self(n-1)-Self(n-2)): n in [1..200]];
  • Maple
    a:= proc(n) option remember; `if`(n<3, 1,
          ceil(exp(1)*a(n-1)-a(n-2)))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 18 2015
  • Mathematica
    nxt[{a_,b_}]:={b,Ceiling[E*b-a]}; NestList[nxt,{1,1},30][[All,1]] (* Harvey P. Dale, Dec 02 2017 *)
Showing 1-3 of 3 results.