A191679 Potential magic constants of 9 X 9 magic squares composed of consecutive primes.
2211, 2261, 2311, 2463, 2725, 4257, 6125, 6611, 7821, 9841, 9973, 10303, 10499, 10631, 10953, 11987, 12115, 12179, 12243, 12309, 12375, 12637, 12837, 13497, 13695, 14169, 15063, 15395, 16207, 16483, 16821, 17605, 17891, 19017, 20345, 20487, 21135, 22539, 22811, 23219, 23985
Offset: 1
Keywords
Examples
a(1)=2211 for a square containing prime(12)..prime(92): [37 127 163 179 229 233 379 421 443 41 431 463 457 59 139 433 109 79 409 311 389 71 307 347 281 53 43 373 137 181 251 401 239 317 89 223 173 419 101 103 113 353 313 277 359 97 383 397 479 47 197 107 263 241 349 131 193 149 367 199 73 467 283 439 61 257 191 227 167 151 449 269 293 211 67 331 461 337 157 83 271] a(2)=2261 for a square containing prime(13)..prime(93): [41 379 281 467 349 257 229 199 59 313 223 127 337 131 101 479 107 443 409 71 331 79 137 263 347 271 353 211 307 487 149 251 293 181 113 269 191 419 109 439 173 233 103 397 197 97 283 193 317 433 457 241 157 83 461 139 239 359 373 179 67 401 43 89 277 73 53 367 167 463 389 383 449 163 421 61 47 311 151 227 431]
Links
- Stefano Tognon, Squares from 37 (in Italian).
- Natalia Makarova, Sequence of Magic Numbers MK 9th Order (in Russian).
Programs
-
Maple
s:= proc(n) option remember; `if` (n=1, add (ithprime(i), i=1..81), ithprime(n+80) -ithprime(n-1) +s(n-1)) end: a:= proc(n) option remember; local k, m; a(n-1); for k from 1+b(n-1) while irem (s(k), 9, 'm')<>0 do od; b(n):= k; m end: a(0):=0: b(0):=0: seq (a(n), n=1..50);
-
Mathematica
Total[#]/9&/@Select[Partition[Prime[Range[500]],81,1],Divisible[ Total[ #],9]&] (* Harvey P. Dale, Jan 08 2014 *)
Extensions
Edited by Max Alekseyev, Jun 18 2011
Comments