A189281 Number of permutations p of 1,2,...,n satisfying p(i+2) - p(i) <> 2 for all 1 <= i <= n-2.
1, 1, 2, 5, 18, 75, 410, 2729, 20906, 181499, 1763490, 18943701, 222822578, 2847624899, 39282739034, 581701775369, 9202313110506, 154873904848803, 2762800622799362, 52071171437696453, 1033855049655584786, 21567640717569135515
Offset: 0
Keywords
Links
- Rintaro Matsuo, Table of n, a(n) for n = 0..300 (terms 0..35 from Vaclav Kotesovec, terms 36..39 from Christoph Koutschan, computed using a parallelization of Kotesovec's Mathematica program)
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 4.
- Manuel Kauers, Comments on the Conjectured Recurrence for A189281.
- Manuel Kauers and Christoph Koutschan, Guessing with Little Data, arXiv:2202.07966 [cs.SC], 2022.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 644.
- Vaclav Kotesovec, Mathematica program for this sequence.
- Rintaro Matsuo, O(n^4) code to calculate a(n)
- George Spahn and Doron Zeilberger, Counting Permutations Where The Difference Between Entries Located r Places Apart Can never be s (For any given positive integers r and s), arXiv:2211.02550 [math.CO], 2022.
Formula
Asymptotics: a(n)/n! ~ (1 + 3/n + 2/n^2)/e.
Conjectured recurrence of degree 11 and order 8: (262711*n + 1387742*n^2 - 824875*n^3 - 1855253*n^4 - 111530*n^5 + 680983*n^6 + 364242*n^7 + 84992*n^8 + 10332*n^9 + 640*n^10 + 16*n^11)*a(n) + (-1050844*n - 9705192*n^2 - 7414683*n^3 + 3536494*n^4 + 6459004*n^5 + 3326393*n^6 + 903534*n^7 + 144684*n^8 + 13756*n^9 + 720*n^10 + 16*n^11)*a(n+1) + (3492344 - 2212342*n - 8507169*n^2 - 11544227*n^3 - 12034116*n^4 - 8216995*n^5 - 3442049*n^6 - 890050*n^7 - 142300*n^8 - 13660*n^9 - 720*n^10 - 16*n^11)*a(n+2) + (19817984 + 45323852*n + 825228*n^2 - 57004661*n^3 - 57059306*n^4 - 28077270*n^5 - 8398637*n^6 - 1631510*n^7 - 207980*n^8 - 16828*n^9 - 784*n^10 - 16*n^11)*a(n+3) + (9586160 + 6680237*n - 13772613*n^2 - 27689586*n^3 - 22162455*n^4 - 9855085*n^5 - 2629562*n^6 - 427656*n^7 - 41332*n^8 - 2176*n^9 - 48*n^10)*a(n+4) + (22192864 + 44710768*n - 2924668*n^2 - 52385912*n^3 - 45161616*n^4 - 18784740*n^5 - 4549208*n^6 - 674256*n^7 - 60400*n^8 - 3008*n^9 - 64*n^10)*a(n+5) + (557152 - 2032472*n - 2937392*n^2 - 1594200*n^3 - 517688*n^4 - 122032*n^5 - 19856*n^6 - 1792*n^7 - 64*n^8)*a(n+6) + (3786960 + 7105324*n - 1191064*n^2 - 8059160*n^3 - 5938996*n^4 - 2073752*n^5 - 402736*n^6 - 44528*n^7 - 2624*n^8 - 64*n^9)*a(n+7) + (-598208 - 943004*n + 414196*n^2 + 1213772*n^3 + 728648*n^4 + 203584*n^5 + 29616*n^6 + 2176*n^7 + 64*n^8)*a(n+8) = 0. This recurrence correctly predicted the four new terms in the b-file. - Christoph Koutschan, Feb 19 2022
Comment from N. J. A. Sloane, Mar 12 2022: (Start)
The preceding conjectured recurrence is equivalent to the following, which has degree 3 and order 13, and was obtained by Doron Zeilberger and then reformatted by Manuel Kauers (it uses Mathematica syntax):
Conjecture: ((-1 + n)^2*n*a[n])/4 + (n*(-16 + 38*n + 11*n^2)*a[1 + n])/16 +
(3/2 + (139*n)/16 + (29*n^2)/8 + (3*n^3)/16)*a[2 + n] +
(-21/4 - (51*n)/4 - (79*n^2)/16 - (5*n^3)/8)*a[3 + n] +
(-15/2 - n/8 + (5*n^2)/4 + n^3/8)*a[4 + n] +
(603/4 + (307*n)/4 + (49*n^2)/4 + (11*n^3)/16)*a[5 + n] +
(-41 - (533*n)/16 - (49*n^2)/8 - (5*n^3)/16)*a[6 + n] +
(-911/2 - 161*n - (303*n^2)/16 - (3*n^3)/4)*a[7 + n] +
(-363 - (417*n)/4 - (37*n^2)/4 - n^3/4)*a[8 + n] +
(-993/4 - 53*n - (11*n^2)/4)*a[9 + n] + (-130 - (93*n)/4 - n^2)*a[10 + n] +
(-71/4 - 2*n)*a[11 + n] + (-10 - n)*a[12 + n] + a[13 + n] == 0.
(End)
From Mark van Hoeij, Jul 25 2012: (Start)
A compact way to write the order 13 recurrence is as follows:
Let b(n) = a(n+3) + a(n+2) + (n/2+2)*a(n+1) + (n-1)*a(n)/2
and c(n) = b(n+4) + (n/2+2)*b(n+2) - b(n+1)/2 + (1-n)*b(n)/2;
then c(n+6) - (n+11)*c(n+5) - (2*n+75/4)*c(n+4) + (3-n)*c(n+3)/4 - c(n+2)/2 - (7*n+22)*c(n+1)/4-n*c(n) = 0. (End)
Comments