cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A110128 Number of permutations p of 1,2,...,n satisfying |p(i+2)-p(i)| not equal to 2 for all 0

Original entry on oeis.org

1, 1, 2, 4, 16, 44, 200, 1288, 9512, 78652, 744360, 7867148, 91310696, 1154292796, 15784573160, 232050062524, 3648471927912, 61080818510972, 1084657970877416, 20361216987032284, 402839381030339816, 8377409956454452732
Offset: 0

Views

Author

Roberto Tauraso, A. Nicolosi and G. Minenkov, Jul 13 2005

Keywords

Comments

When n is even: 1) Number of ways that n persons seated at a rectangular table with n/2 seats along the two opposite sides can be rearranged in such a way that neighbors are no more neighbors after the rearrangement. 2) Number of ways to arrange n kings on an n X n board, with 1 in each row and column, which are non-attacking with respect to the main four quadrants.
a(n) is also number of ways to place n nonattacking pieces rook + alfil on an n X n chessboard (Alfil is a leaper [2,2]) [From Vaclav Kotesovec, Jun 16 2010]
Note that the conjectured recurrence was based on the 600-term b-file, not the other way round. - N. J. A. Sloane, Dec 07 2022

Crossrefs

Column k=2 of A333706.

Formula

A formula is given in the Tauraso reference.
Asymptotic (R. Tauraso 2006, quadratic term V. Kotesovec 2011): a(n)/n! ~ (1 + 4/n + 8/n^2)/e^2.
a(n) ~ exp(-2) * n! * (1 + 4/n + 8/n^2 + 68/(3*n^3) + 242/(3*n^4) + 1692/(5*n^5) + 72802/(45*n^6) + 2725708/(315*n^7) + 16083826/(315*n^8) + 186091480/(567*n^9) + 32213578294/(14175*n^10) + ...), based on the recurrence by Manuel Kauers. - Vaclav Kotesovec, Dec 05 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Vladeta Jovovic, Jan 01 2008
Terms a(33)-a(35) from Vaclav Kotesovec, Apr 20 2012

A189282 Number of permutations p of 1,2,...,n satisfying p(i+3)-p(i)<>3 for all 1<=i<=n-3.

Original entry on oeis.org

1, 1, 2, 6, 22, 98, 534, 3414, 25498, 217338, 2080990, 22076030, 256888218, 3252308706, 44497313158, 654139144158, 10281397705242, 172033123244330, 3052895403376110, 57266799403366334, 1132124282036449570, 23524895818926592242
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[3,3] on an n X n chessboard.

Crossrefs

Formula

Asymptotics: a(n)/n! ~ (1 + 5/n + 6/n^2)/e.

A189283 Number of permutations p of 1,2,...,n satisfying p(i+4)-p(i)<>4 for all 1<=i<=n-4.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 628, 4062, 30360, 255186, 2414292, 25350954, 292378968, 3673917102, 49928069188, 729534877758, 11403682481112, 189862332575658, 3354017704180052, 62654508729565554, 1233924707891272728, 25550498290562247438
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[4,4] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 7/n + 12/n^2)/e.

Extensions

Terms a(26)-a(27) from Vaclav Kotesovec, Apr 20 2012

A189843 Number of ways to place n nonattacking composite pieces rook + semi-rider[2,2] on an n X n chessboard.

Original entry on oeis.org

1, 2, 5, 18, 71, 356, 2097, 14212, 105821, 887576, 8093601, 81310936, 876456695, 10257217440, 127631146697, 1705775408656
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying p(j+2k)-p(j)<>2k for all j>=1, k>=1, j+2k<=n
about semi-pieces see semi-bishop (A187235) and semi-queen (A099152)

Crossrefs

A189284 Number of permutations p of 1,2,...,n satisfying p(i+5)-p(i)<>5 for all 1<=i<=n-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 696, 4572, 34260, 290328, 2751480, 28686024, 328764732, 4106158164, 55495145304, 806797105320, 12554890849992, 208164423163908, 3663256621120548, 68188490015132040, 1338490745511631080, 27630826605742438968
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[5,5] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 9/n + 20/n^2)/e.

Extensions

Terms a(25)-a(26) from Vaclav Kotesovec, Apr 20 2012

A189285 Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4920, 37488, 319644, 3033264, 31784280, 364902480, 4538652840, 61102571376, 885045657564, 13722397569072, 226742901078120, 3977354871110160, 73816786920489720, 1444940702597713008, 29750236302549282948
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[6,6] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 11/n + 30/n^2)/e.
Generally (for this sequence is d=6): 1/e*(1+(2d-1)/n+d*(d-1)/n^2).

Extensions

Terms a(23)-a(24) from Vaclav Kotesovec, Apr 21 2012
Showing 1-6 of 6 results.