A335831 Numbers k with a record value of tau(tau(k)) (A010553), where tau(k) is the number of divisors of k (A000005).
1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 129729600, 908107200, 2205403200, 15437822400, 293318625600, 3226504881600, 6746328388800, 74209612276800, 195643523275200, 1855240306920000, 2152078756027200, 27977023828353600
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..73
- Yvonne Buttkewitz, Christian Elsholtz, Kevin Ford and Jan-Christoph Schlage-Puchta, A problem of Ramanujan, Erdős, and Kátai on the iterated divisor function, International Mathematics Research Notices, Vol. 2012, No. 17 (2012), pp. 4051-4061, preprint, arXiv:1108.1815 [math.NT], 2011.
- Amiram Eldar, Table of n, a(n), A010553(a(n)) for n = 1..73
- Christian Elsholtz, Marc Technau and Niclas Technau, The maximal order of iterated multiplicative functions, Mathematika, Vol. 65, No. 4 (2019), pp. 990-1009, preprint, arXiv:1709.04799 [math.NT], 2017 and 2019.
Programs
-
Mathematica
f[n_] := DivisorSigma[0, DivisorSigma[0, n]]; fm = 0; s = {}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 10^5}]; s
Formula
tau(tau(a(n))) ~ c * sqrt(log(a(n)))/log(log(a(n))), where c is a constant (Buttkewitz et al., 2012).
Comments