cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A328232 Numbers whose arithmetic derivative (A003415) is a primorial number, including cases where it is the first primorial, A002110(0) = 1.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 161, 163, 167, 173, 179, 181, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2019

Keywords

Comments

Numbers n such that A327859(n) = A276086(A003415(n)) is a prime.

Crossrefs

Cf. A002110, A003415, A024451 (arith. deriv. of primorials), A068346, A276086, A327859, A328233.
Union of A000040 and A327978 (gives the composite terms).
Differs from A189710 for the first time by having term a(39) = 161, which is not included in A189710, while A189710(44) = 185 is the first term in latter that is not included here.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327859(n) = A276086(A003415(n));
    isA328232(n) = isprime(A327859(n));

A189639 Numbers n such that n'' = n'+1 where n' and n'' are respectively the first and the second arithmetic derivative of n (A003415).

Original entry on oeis.org

161, 209, 221, 1935, 4265, 15941, 22217, 24041, 25637, 30377, 38117, 39077, 48617, 49097, 55877, 68441, 73817, 76457, 80357, 88457, 95237, 98117, 99941, 105641, 110057, 115397, 122537, 130217, 131141, 136517, 143237, 147941, 148697, 152357, 154457, 159077
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 24 2011

Keywords

Comments

The arithmetic derivative of a(n) is a Giuga's number A007850 (solution of n' = n+1).

Examples

			161' = 30, 161'' = 30' = 31 ==> 161'' = 161'+1 so 161 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a189710 n = a189710_list !! (n-1)
    a189710_list = elemIndices 0 $
       zipWith (-) (map a003415 a003415_list) (map pred a003415_list)
    -- Reinhard Zumkeller, May 09 2011
  • PARI
    /* using Michael B. Porter's code from A003415: */
    A003415(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))} /* arithmetic derivative */
    for(n=1,10^6,d1=A003415(n);d2=A003415(d1);if(d2==d1+1,print1(n,", "))); /* show terms */
    /* Joerg Arndt, Apr 25 2011 */
    

A188145 Solutions of the equation n" - n' - n = 0, where n' and n" are the first and second arithmetic derivatives (see A003415).

Original entry on oeis.org

0, 20, 135, 164, 1107, 15625, 43692, 128125, 188228, 294921, 1270539, 4117715, 33765263, 34134375, 147053125, 8995560189, 19348535652, 38753462951
Offset: 1

Views

Author

Paolo P. Lava, Mar 22 2011

Keywords

Comments

Solutions of the similar equation n”-n’+n=0 are 30, 858, 1722, etc., apparently Giuga numbers whose derivative is a prime number. In fact the equation can be rewritten as n'=n+n" and if n"=1 it is the conjecture in A007850.
a(16) > 2*10^9. - Donovan Johnson, Apr 30 2011
a(19) > 10^11. - Giovanni Resta, Jun 04 2016

Examples

			n=20, n’=24, n”=44 -> 44-24-20=0;  n=135, n’=162, n”=297 -> 297-162-135=0
		

Crossrefs

Programs

  • Haskell
    import Data.List (zipWith3, elemIndices)
    a188145 n = a188145_list !! (n-1)
    a188145_list = elemIndices 0 $ zipWith3 (\x y z -> x - y - z)
       (map a003415 a003415_list) a003415_list [0..]
    -- Reinhard Zumkeller, May 10 2011
  • Maple
    readlib(ifactors):
    Der:= proc(n)
    local a,b,i,p,pfs;
    for i from 0 to n do
      if i<=1 then a:=0;
      else pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs) ;
      fi;
      if a<=1 then b:=0;
      else pfs:=ifactors(a)[2]; b:=a*add(op(2,p)/op(1,p),p=pfs) ;
      fi;
      if b-a=i then lprint(i,a,b); fi;
    od
    end:
    Der(10000000);

Extensions

a(13)-a(15) from Donovan Johnson, Apr 30 2011
Corrected a(9) and a(16)-a(18) from Giovanni Resta, Jun 04 2016

A189803 Composite numbers n such that n'' = n'-1 where n' and n'' are the first and the second arithmetic derivative of n.

Original entry on oeis.org

9, 185, 341, 377, 437, 9005, 30413, 33953, 41009, 51533, 82673, 92909, 103073, 126509, 143009, 165773, 181793, 184973, 191309, 228653, 231713, 246893, 291233, 311309, 316973, 319793, 329357, 353009, 358433, 374513, 398093, 405809, 431009, 460193, 467309
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 27 2011

Keywords

Comments

The sequence A189710 (n"=n'-1) includes all prime numbers because p'=1 and p" = 0. Composite numbers are not very frequent.
Are all terms semiprimes? These terms appear to be p*q such that p+q is a term in A054377, which has solutions to the equation n' = n-1. - T. D. Noe, Apr 27 2011

Examples

			9' = 6, 9''= 6'= 5, 9" = 9'- 1 -> 9 is in the sequence.
		

Crossrefs

Programs

  • PARI
    ader(n) = my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1])); \\ A003415
    isok(k) = if (!isprime(k), my(d=ader(k)); ader(d) == d - 1); \\ Michel Marcus, Mar 13 2023
Showing 1-4 of 4 results.