A189889 Maximum number of nonattacking kings on an n X n toroidal board.
1, 1, 1, 4, 5, 9, 10, 16, 18, 25, 27, 36, 39, 49, 52, 64, 68, 81, 85, 100, 105, 121, 126, 144, 150, 169, 175, 196, 203, 225, 232, 256, 264, 289, 297, 324, 333, 361, 370, 400, 410, 441, 451, 484, 495, 529, 540, 576, 588, 625
Offset: 1
References
- John Watkins, Across the Board: The Mathematics of Chessboard Problems (2004), Theorem 11.1, p.194.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Hernan de Alba, W. Carballosa, J. LeaƱos, and L. M. Rivera, Independence and matching numbers of some token graphs, arXiv preprint arXiv:1606.06370 [math.CO], 2016.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 751.
- Eric Weisstein's World of Mathematics, Kings Problem.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).
Programs
-
Magma
[1] cat [Floor(n*Floor(n/2)/2): n in [2..50]]; // G. C. Greubel, Jan 13 2018
-
Maple
A189889:=n->`if`(n=1,1,floor(n*floor(n/2)/2)); seq(A189889(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013
-
Mathematica
Table[If[n==1,1,Floor[(n*Floor[n/2])/2]],{n,1,50}] CoefficientList[Series[(- x^7 + x^6 + x^5 + 3 * x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *) Join[{1},LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,4,5,9,10,16},50]] (* Harvey P. Dale, Aug 07 2013 *)
-
PARI
Vec(x*(-x^7 + x^6 + x^5 + 3*x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1) + O(x^51)) \\ Indranil Ghosh, Mar 09 2017
-
PARI
a(n) = if(n==1, 1, floor((n*floor(n/2))/2)); \\ Indranil Ghosh, Mar 09 2017
-
Python
def A189889(n): return 1 if n==1 else (n*(n/2))/2 # Indranil Ghosh, Mar 09 2017
Formula
a(n) = floor((n*floor(n/2))/2), n > 1 (Watkins and Ricci, 2004).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
G.f.: x*(-x^7 +x^6 +x^5 +3*x^3 -x^2 +1) / (-x^7 +x^6 +x^5 -x^4+ x^3 -x^2 -x +1).
Comments