cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189890 a(n) = (n^3 - 2*n^2 + 3*n + 2)/2.

Original entry on oeis.org

2, 4, 10, 23, 46, 82, 134, 205, 298, 416, 562, 739, 950, 1198, 1486, 1817, 2194, 2620, 3098, 3631, 4222, 4874, 5590, 6373, 7226, 8152, 9154, 10235, 11398, 12646, 13982, 15409, 16930, 18548, 20266, 22087, 24014, 26050, 28198, 30461, 32842, 35344, 37970, 40723, 43606, 46622
Offset: 1

Views

Author

Adeniji, Adenike and Samuel Makanjuola(somakanjuola(AT)unilorin.edu.ng), Apr 30 2011

Keywords

Comments

Order preserving identity difference partial one - one transformation semigroup, OIDI_n is defined if for each transformation, alpha, x<= y implies xalpha <= yalpha, for all x,y in X_n (set of natural numbers) and also the absolute value of the difference between max(Im(alpha)) and min(Im(alpha)) is less than or equal to one with non-isolation property.

Examples

			For n = 4, a(4) = (4^3-2*4^2+3*4+2)/2 = 46/2 = 23.
		

Crossrefs

Programs

  • Magma
    [(n^3-2*n^2+3*n+2)/2: n in [1..50]]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[(n^3-2*n^2+3*n+2)/2, {n,1,50}] (* or *) LinearRecurrence[{4,-6,4, -1}, {2,4,10,23}, 50] (* G. C. Greubel, Jan 13 2018 *)
  • PARI
    a(n)=(n^3-2*n^2+3*n+2)/2 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: -x*(-2+4*x-6*x^2+x^3) / (x-1)^4. - R. J. Mathar, Jun 20 2011
E.g.f.: 4*(-2 + (2 + 2*x + x^2 + x^3)*exp(x)). - G. C. Greubel, Jan 13 2018
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 23 2021