A189998 Numerator of h(n+5) - h(n) where h(n) = Sum_{k=1..n} (1/k) are the Harmonic numbers.
137, 29, 153, 743, 1879, 1627, 15797, 2021, 11899, 25381, 7793, 2627, 124877, 26987, 68879, 65003, 107699, 66167, 482897, 16167, 77293, 412561, 323959, 94781, 1323137, 255127, 587299, 504563, 255733, 145209, 2956637, 277681, 1247459, 2094661, 1558379, 433501
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[137] cat [Numerator(HarmonicNumber(n+5)-HarmonicNumber(n)): n in [0..30]]; // G. C. Greubel, Jan 11 2018
-
Maple
h:= n->sum(1/k,k=1..n):seq(numer(h(n+5)-h(n)), n=0..28); q:=n-> (1-(-1)^n)*(3+I^(n+1))/4+1: P:=(k,n)-> floor(1/2*cos(2*n*Pi/k)+1/2): seq( (5*n^4+60*n^3+255*n^2+450*n+274)/(2^q(n)*3^(P(9,n-1)+P(9,n-2)+1-P(3,n))),n=0..28)
-
Mathematica
Numerator[Table[HarmonicNumber[n+5]-HarmonicNumber[n],{n,0,30}]] (* Harvey P. Dale, Sep 15 2016 *)
-
Python
from sympy import harmonic,numer print([numer(harmonic(n+5) - harmonic(n)) for n in range(0, 30)]) # Javier Rivera Romeu, May 22 2023
Formula
a(n) = (5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/(2^q(n)*3^(P(9,n-1) + P(9,n-2) + 1 - P(3,n))), where q(n) = (1-(-1)^n)*(3+i^(n+1))/4 + 1 and P(k,n) = floor(1/2*cos(2*n*Pi/k)+1/2).
Comments