cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189998 Numerator of h(n+5) - h(n) where h(n) = Sum_{k=1..n} (1/k) are the Harmonic numbers.

Original entry on oeis.org

137, 29, 153, 743, 1879, 1627, 15797, 2021, 11899, 25381, 7793, 2627, 124877, 26987, 68879, 65003, 107699, 66167, 482897, 16167, 77293, 412561, 323959, 94781, 1323137, 255127, 587299, 504563, 255733, 145209, 2956637, 277681, 1247459, 2094661, 1558379, 433501
Offset: 0

Views

Author

Gary Detlefs, May 03 2011

Keywords

Comments

a(n) = Numerator of (5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/((n+1)*(n+2)*(n+3)*(n+4)*(n+5)).
(5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/a(n) can be factored into 2^p(n)* 3^q(n) where p(n) is a sequence of period 4 repeating [1,2,1,3] and q(n) is of period 9,repeating [0,2,2,0,1,1,0,1,1].
p(n) = A131743(n) + 1.
q(n) = A011655(n) + [0,2,2,0,0,0,0,0,0]

Crossrefs

Programs

  • Magma
    [137] cat [Numerator(HarmonicNumber(n+5)-HarmonicNumber(n)): n in [0..30]]; // G. C. Greubel, Jan 11 2018
    
  • Maple
    h:= n->sum(1/k,k=1..n):seq(numer(h(n+5)-h(n)), n=0..28);
    q:=n-> (1-(-1)^n)*(3+I^(n+1))/4+1:
    P:=(k,n)-> floor(1/2*cos(2*n*Pi/k)+1/2):
    seq( (5*n^4+60*n^3+255*n^2+450*n+274)/(2^q(n)*3^(P(9,n-1)+P(9,n-2)+1-P(3,n))),n=0..28)
  • Mathematica
    Numerator[Table[HarmonicNumber[n+5]-HarmonicNumber[n],{n,0,30}]] (* Harvey P. Dale, Sep 15 2016 *)
  • Python
    from sympy import harmonic,numer
    print([numer(harmonic(n+5) - harmonic(n)) for n in range(0, 30)])
    # Javier Rivera Romeu, May 22 2023

Formula

a(n) = (5*n^4 + 60*n^3 + 255*n^2 + 450*n + 274)/(2^q(n)*3^(P(9,n-1) + P(9,n-2) + 1 - P(3,n))), where q(n) = (1-(-1)^n)*(3+i^(n+1))/4 + 1 and P(k,n) = floor(1/2*cos(2*n*Pi/k)+1/2).