cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192359 Numerator of h(n+6) - h(n), where h(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

49, 223, 341, 2509, 2131, 20417, 18107, 30233, 96163, 1959, 36177, 51939, 436511, 598433, 80507, 532541, 1388179, 1785181, 378013, 95003, 1181909, 4370849, 2671363, 3240049, 1560647, 9333997, 5547947, 2185691, 5138581, 1201967, 10493071, 12159157, 28060691, 32250013
Offset: 0

Views

Author

Gary Detlefs, Jun 28 2011

Keywords

Comments

Numerator of (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/((n+1)*(n+2)*...*(n+6)).
(2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,2,3,3]
p(n) is of period 9, repeating [2,2,2,1,1,1,1,1,1]
q1(n) is of period 5, repeating [0,0,0,0,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].

Crossrefs

Programs

  • GAP
    List(List([0..35],n->Sum([1..n+6],k->(1/k))-Sum([1..n],k->(1/k))),NumeratorRat); # Muniru A Asiru, Oct 21 2018
  • Magma
    [49] cat [Numerator(HarmonicNumber(n+6) - HarmonicNumber(n)): n in [1..40]]; // G. C. Greubel, Oct 20 2018
    
  • Maple
    h:= n-> sum(1/k,k=1..n):seq(numer(h(n+6)-h(n)), n=0..33);
    P:=(x,y,z,n)-> floor(((n+x)mod y)/z):
    a:=n->(2*n+7)*(3*n^4+42*n^3+203*n^2+392*n+252)/(2^(P(0,4,2,n)+2)*3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))):
    seq(a(n), n=0..25);
  • Mathematica
    Numerator[Table[HarmonicNumber[n+6]-HarmonicNumber[n],{n,0,40}]] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    h(n) = sum(k=1, n, 1/k);
    a(n) = numerator(h(n+6)-h(n)); \\ Michel Marcus, Apr 15 2017
    

Formula

a(n) = (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/(2^(P(0,4,2,n)+2) * 3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))), where P(x,y,z,n) = floor(((n+x)mod y)/z).

A192449 Numerator of h(n+7) - h(n), where h(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

363, 481, 3349, 2761, 25961, 22727, 263111, 237371, 21635, 8837, 695089, 529331, 9407549, 679829, 641069, 6671911, 36404897, 4075097, 2159257, 1412139, 36516143, 35036093, 88771727, 3715069
Offset: 0

Views

Author

Gary Detlefs, Jul 01 2011

Keywords

Comments

a(n) = numerator((7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/((n+1)*(n+2)*...*(n+7)));
(7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,4,3,4]
p(n) is of period 9, repeating [2,2,2,1,1,2,1,1,2]
q1(n) is of period 5, repeating [0,0,0,1,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Crossrefs

Programs

  • Maple
    h:= n-> sum(1/k,k=1..n):seq(numer(h(n+7)-h(n)), n=0..23);
    P:=(x,y,z,n)-> floor(((n+x) mod y)/z):
    m:=n-> P(1,4,3,n)+2*P(0,2,1,n)+2:
    p:=n-> P(0,3,2,n)+P(7,9,7,n)+1:
    q:=n-> P(0,5,3,n)+P(15,15,23,n):
    N7:=n->(7*n^6+168*n^5+1610*n^4+7840*n^3+20307*n^2+26264*n+13068): seq(N7(n)/(2^m(n)*3^p(n)*5^q(n)), n=0..23);
    # Alternative implementation, R. J. Mathar, Jul 12 2011:
    A192449 := proc(n) add(1/i,i=n+1..n+7) ; numer(%) ; end proc:
  • Mathematica
    #[[8]]-#[[1]]&/@Partition[HarmonicNumber[Range[0,30]],8,1]//Numerator (* Harvey P. Dale, Jul 22 2024 *)

Formula

a(n) = (7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/ (2^m(n)*3^p(n)*5^q(n)) where
m(n) = P(1,4,3,n) + 2*P(0,2,1,n) + 2,
p(n) = P(0,3,2,n) + P(7,9,7,n) + 1,
q(n) = P(0,5,3,n) + P(15,15,23,n),
P(x,y,z,n) = floor(((n+x) mod y)/z).

Extensions

Corrected and extended by Harvey P. Dale, Jul 22 2024
Showing 1-2 of 2 results.