A190116 a(n) = n*n', where n' is the arithmetic derivative (A003415) of n.
0, 2, 3, 16, 5, 30, 7, 96, 54, 70, 11, 192, 13, 126, 120, 512, 17, 378, 19, 480, 210, 286, 23, 1056, 250, 390, 729, 896, 29, 930, 31, 2560, 462, 646, 420, 2160, 37, 798, 624, 2720, 41, 1722, 43, 2112, 1755, 1150, 47, 5376, 686, 2250
Offset: 1
Keywords
Examples
For n=4, 4'= 4, 4*4' = 16, so a(4)=16.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]): seq(der(n)*n,n=1..50);
-
Mathematica
A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[n*A003415[n], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
-
PARI
a(n) = n*sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); \\ Michel Marcus, Dec 30 2017
Comments