cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085731 Greatest common divisor of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 64, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Comments

a(n) = 1 iff n is squarefree (A005117), cf. A068328.
This sequence is very probably multiplicative. - Mitch Harris, Apr 19 2005

Crossrefs

Programs

  • Haskell
    a085731 n = gcd n $ a003415 n -- Reinhard Zumkeller, May 10 2011
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := GCD[n, d[n]]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Feb 21 2014 *)
    f[p_, e_] := p^If[Divisible[e, p], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if (f[i,2] % f[i,1], f[i,2]--);); factorback(f);} \\ Michel Marcus, Feb 14 2016

Formula

a(n) = GCD(n, A003415(n)).
Multiplicative with a(p^e) = p^e if p divides e; a(p^e) = p^(e-1) otherwise. - Eric M. Schmidt, Oct 22 2013
From Antti Karttunen, Feb 28 2021: (Start)
Thus a(A276086(n)) = A328572(n), by the above formula and the fact that A276086 is a permutation of A048103.
a(n) = n / A083346(n) = A190116(n) / A086130(n). (End)

A327861 Number of divisors d of n for which A003415(d)*d is equal to n, where A003415(x) gives the arithmetic derivative of x.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Comments

Number of times n occurs in A190116.

Examples

			a(4153248)=2 as out of 192 divisors of 4153248, only 1368 and 2277 are such that 1368 * A003415(1368) = 2277 * A003415(2277) = 4153248.
		

Crossrefs

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A327861(n) = sumdiv(n,d,(d*A003415(d) == n));

A348279 a(n) = Sum_{d|n} d*d', where d' is the arithmetic derivative of d (A003415).

Original entry on oeis.org

0, 2, 3, 18, 5, 35, 7, 114, 57, 77, 11, 243, 13, 135, 128, 626, 17, 467, 19, 573, 220, 299, 23, 1395, 255, 405, 786, 1047, 29, 1160, 31, 3186, 476, 665, 432, 2835, 37, 819, 640, 3389, 41, 2100, 43, 2427, 1937, 1175, 47, 7283, 693, 2577, 1040, 3333, 53, 5570, 896, 6295, 1276
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 09 2021

Keywords

Examples

			a(4) = 18; a(4) = 1*1' + 2*2' + 4*4' = 1*0 + 2*1 + 4*4 = 18.
		

Crossrefs

Cf. A003415 (arithmetic derivative).
Inverse Möbius transform of A190116.
Cf. also A347130.

Programs

  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = sumdiv(n, d, d*ad(d)); \\ Michel Marcus, Oct 10 2021

Formula

a(p) = p for primes p since we have a(p) = 1*1' + p*p' = 1*0 + p*1 = p.
a(n) = Sum_{d|n} A190116(d). - Antti Karttunen, Dec 07 2021

A190117 a(n) = Sum_{k=1..n} k*k', where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 2, 5, 21, 26, 56, 63, 159, 213, 283, 294, 486, 499, 625, 745, 1257, 1274, 1652, 1671, 2151, 2361, 2647, 2670, 3726, 3976, 4366, 5095, 5991, 6020, 6950, 6981, 9541, 10003, 10649, 11069, 13229, 13266, 14064, 14688, 17408, 17449, 19171, 19214, 21326, 23081, 24231, 24278, 29654, 30340, 32590
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Examples

			1*1' + 2*2' + 3*3' = 0 + 2 + 3 = 5 -> a(3) = 5.
		

Crossrefs

Partial sums of A190116.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(der(i)*i,i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];
    Table[Sum[k*A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)

Formula

a(n) ~ c * n^3 / 3, where c = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Jun 22 2025

A359331 Nonprime numbers k for which k*k' is a palindrome, where k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

1, 34, 44, 49, 121, 476, 524, 533, 1808, 6797, 7326, 10016, 10201, 10403, 10817, 16019, 17831, 26322, 33898, 55198, 57247, 74711, 87241, 131395, 148753, 156029, 239593, 240021, 289831, 295022, 423758, 441691, 595777, 725754, 900009, 2568543, 2910271, 2981619
Offset: 1

Views

Author

Marius A. Burtea, Jan 29 2023

Keywords

Examples

			1*1' = 1*0 = 0, so 1 is a term.
34*34' = 34*19 = 646, so 34 is a term.
49*49' = 49*14 = 686, so 49 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; pal:=func; [n:n in [1..3000000]|not IsPrime(n) and pal(n*Floor(f(n)))];
  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    q:= n-> not isprime(n) and StringTools[IsPalindrome](""||(n*d(n))):
    select(q, [$1..3000000])[];  # Alois P. Heinz, Jan 29 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[3*10^6], ! PrimeQ[#] && PalindromeQ[# * d[#]] &] (* Amiram Eldar, Jan 29 2023 *)
Showing 1-5 of 5 results.