A190476 The number of partitions of the set {1,2,...,n} into subsets (blocks,cells) having a prime number of elements.
1, 0, 1, 1, 3, 11, 25, 127, 441, 1954, 10011, 45266, 264583, 1445380, 8585655, 55660801, 352151073, 2482766225, 17559191557, 129772490863, 1013321885751, 7972553309386, 66428256850935, 564371629663172, 4946383948336009, 45027627776367801, 416996057365437135
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; local p; if n=0 then 1 elif n=1 or i<1 then 0 else p:= ithprime(i); b(n, i-1) +add(mul(binomial(n-(h-1)*p, p), h=1..j) *b(n-j*p, i-1)/j! , j=1..iquo(n,p)) fi end: a:= n-> b(n, pi(n)): seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2011
-
Mathematica
a= Table[Prime[n],{n,1,20}]; b= Sum[x^i/i!,{i,a}]; Range[0,20]! CoefficientList[Series[Exp[b],{x,0,20}],x]
-
PARI
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*x^k/k!)))) \\ Seiichi Manyama, Feb 26 2022
-
PARI
a(n) = if(n==0, 1, sum(k=1, n, isprime(k)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Feb 26 2022
Formula
E.g.f.: exp(Sum_{p=prime} x^p/p!).
a(0) = 1; a(n) = Sum_{p<=n, p prime} binomial(n-1,p-1) * a(n-p). - Seiichi Manyama, Feb 26 2022
Comments