cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190509 a(n) = n + [nr/s] + [nt/s] + [nu/s] where r=golden ratio, s=r^2, t=r^3, u=r^4, and [] represents the floor function.

Original entry on oeis.org

4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 69, 76, 80, 87, 91, 98, 105, 109, 116, 120, 127, 134, 138, 145, 152, 156, 163, 167, 174, 181, 185, 192, 199, 203, 210, 214, 221, 228, 232, 239, 243, 250, 257, 261, 268, 275, 279, 286, 290, 297, 304, 308, 315, 319, 326, 333, 337, 344, 351, 355, 362, 366, 373, 380, 384, 391, 398, 402, 409
Offset: 1

Views

Author

Clark Kimberling, May 11 2011

Keywords

Comments

See A190508.
From Clark Kimberling, Nov 13 2022: (Start)
This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) u o v';
(3) v o u';
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. For the reverse composites, u o v, u o v', u' o v, u' o v', see A356104 to A356107.
Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and
1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1.
For this sequence, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217
(2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218
(3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = this sequence
(4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220
(End)

Crossrefs

Programs

  • Magma
    [3*Floor(n*(Sqrt(5)+1)/2) + n: n in [1..80]]; // Vincenzo Librandi, Nov 01 2018
    
  • Maple
    r:=(1+sqrt(5))/2: s:=r^2: t:=r^3: u:=r^4: a:=n->n+floor(n*r/s)+floor(n*t/s)+floor(n*u/s):  seq(a(n),n=1..70); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    (See A190508.)
    Table[3 Floor[n (Sqrt[5] + 1) / 2] + n, {n, 1, 100}] (* Vincenzo Librandi, Nov 01 2018 *)
  • PARI
    a(n) = 3*floor(n*(sqrt(5)+1)/2) + n; \\ Michel Marcus, Sep 10 2017; after Michel Dekking's formula
    
  • Python
    from math import isqrt
    def A190509(n): return n+((m:=n+isqrt(5*n**2))&-2)+(m>>1) # Chai Wah Wu, Aug 10 2022

Formula

A190508: a(n) = n + [nr] + [nr^2] + [nr^3];
A190509: b(n) = [n/r] + n + [nr] + [nr^2];
A054770: c(n) = [n/r^2] + [n/r] + n + [nr];
A190511: d(n) = [n/r^3] + [n/r^2] + [n/r] + n.
a(n) = 3*A000201(n)+n, since r/s = 1/r = r-1, and u/s = r^2 = r+1. - Michel Dekking, Sep 06 2017
a(n) = A000201(n) + A003623(n). - Primoz Pirnat, Jan 08 2021

A347068 Rectangular array (T(n,k)), by downward antidiagonals: T(n,k) = position of k in the ordering of {h*r^m, r = 1/(golden ratio), h >= 1, 0 <= m <= n}.

Original entry on oeis.org

2, 5, 4, 7, 10, 8, 10, 14, 18, 14, 13, 20, 26, 31, 25, 15, 26, 36, 46, 53, 42, 18, 30, 47, 63, 79, 88, 71, 20, 36, 55, 81, 107, 132, 146, 117, 23, 40, 65, 96, 136, 178, 219, 239, 193, 26, 46, 73, 112, 162, 225, 294, 359, 391, 315, 28, 52, 84, 127, 189, 269
Offset: 1

Views

Author

Clark Kimberling, Sep 02 2021

Keywords

Comments

Row 1: A001950 (upper Wythoff sequence);
row 2: A283234;
row 3: A190508;
col 1: A020956.

Examples

			Corner:
    2,   5,   7,  10,  13,  15,  18,  20,  23, ...
    4,  10,  14,  20,  26,  30,  36,  40,  46, ...
    8,  18,  26,  36,  47,  55,  65,  73,  84, ...
   14,  31,  46,  63,  81,  96, 112, 127, 145, ...
   25,  53,  79, 107, 136, 162, 189, 215, 244, ...
   42,  88, 132, 178, 225, 269, 314, 358, 405, ...
   71, 146, 219, 294, 370, 443, 517, 590, 666, ...
   ...
		

Crossrefs

Programs

  • Mathematica
    z = 1000; r = N[(-1+Sqrt[5])/2];
    s[m_] := Range[z] r^m; t[0] = s[0];
    t[n_] := Sort[Union[s[n], t[n - 1]]]
    row[n_] := Flatten[Table[Position[t[n], N[k]], {k, 1, z}]]
    TableForm[Table[row[n], {n, 1, 10}]] (* A347068, array *)
    w[n_, k_] := row[n][[k]];
    Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A347068, sequence *)

A190511 n+[nr/u]+[ns/u]+[nt/u]; r=golden ratio, s=r^2, t=r^3, u=r^4.

Original entry on oeis.org

1, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 28, 30, 32, 34, 37, 39, 41, 43, 45, 48, 50, 52, 54, 57, 59, 61, 63, 66, 68, 70, 72, 75, 77, 79, 81, 83, 86, 88, 90, 92, 95, 97, 99, 101, 104, 106, 108, 110, 113, 115, 117, 119, 121, 124, 126, 128, 130, 133, 135, 137, 139, 142, 144, 146, 148, 151, 153, 155, 157, 159, 162, 164, 166, 168, 171, 173
Offset: 1

Views

Author

Clark Kimberling, May 11 2011

Keywords

Comments

A190508: a(n)=n+[nr]+[nr^2]+[nr^3]
A190509: b(n)=[n/r]+n+[nr]+[nr^2]
A054770: c(n)=[n/r^2]+[n/r]+n+[nr]
A190511: d(n)=[n/r^3]+[n/r^2]+[n/r]+n
Are the differences between successive terms always 2 or 3? - Harvey P. Dale, Apr 03 2025

Crossrefs

Programs

  • Mathematica
    (See A190508.)
    Module[{g=GoldenRatio,g4},g4=g^4;Table[n+Floor[(n*g)/g4]+Floor[(n*g^2)/g4]+Floor[(n*g^3)/g4],{n,80}]] (* Harvey P. Dale, Apr 03 2025 *)

Formula

a(n) = A022839(n)-1. - Michel Dekking, May 04 2019
Showing 1-3 of 3 results.