cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190819 Initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12.

Original entry on oeis.org

128981, 665111, 2798921, 3992201, 5071667, 5093507, 5344247, 10732817, 11920367, 16197947, 16462541, 16655447, 16943471, 21456047, 25793897, 32634311, 34051007, 34864211, 35250431, 38585201, 39898757, 49584371, 50375861, 51867197, 54738767, 55793951
Offset: 1

Views

Author

Zak Seidov, May 21 2011

Keywords

Comments

Subsequence of A190817, a(1) = 128981 = A190817(6).
a(n) + 42 is the greatest term in the sequence of 7 consecutive primes with 6 consecutive gaps 2, 4, 6, 8, 10, 12. - Muniru A Asiru, Aug 10 2017

Examples

			Prime(12073..12079) = {128981, 128983, 128987, 128993, 129001, 129011, 129023} with first differences {2, 4, 6, 8, 10, 12}.
		

Crossrefs

Programs

  • Maple
    N:=10^7: # to get all terms <= N.
    Primes:=select(isprime,[seq(i,i=3..N+42,2)]):
    Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],
    Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4], Primes[t+6]-Primes[t+5] ]=[2,4,6,8,10,12], [$1..nops(Primes)-6])]; # Muniru A Asiru, Aug 04 2017
  • Mathematica
    d = Differences[Prime[Range[1000000]]]; Prime[Flatten[Position[Partition[d, 6, 1], {2, 4, 6, 8, 10, 12}]]] (* T. D. Noe, May 23 2011 *)
    Prime[SequencePosition[Differences[Prime[Range[34*10^5]]],{2,4,6,8,10,12}][[All,1]]] (* Harvey P. Dale, Feb 18 2022 *)

Extensions

Additional cross references from Harvey P. Dale, May 10 2014