A190819 Initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12.
128981, 665111, 2798921, 3992201, 5071667, 5093507, 5344247, 10732817, 11920367, 16197947, 16462541, 16655447, 16943471, 21456047, 25793897, 32634311, 34051007, 34864211, 35250431, 38585201, 39898757, 49584371, 50375861, 51867197, 54738767, 55793951
Offset: 1
Keywords
Examples
Prime(12073..12079) = {128981, 128983, 128987, 128993, 129001, 129011, 129023} with first differences {2, 4, 6, 8, 10, 12}.
Links
- Zak Seidov, Table of n, a(n) for n = 1..300
Programs
-
Maple
N:=10^7: # to get all terms <= N. Primes:=select(isprime,[seq(i,i=3..N+42,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4], Primes[t+6]-Primes[t+5] ]=[2,4,6,8,10,12], [$1..nops(Primes)-6])]; # Muniru A Asiru, Aug 04 2017
-
Mathematica
d = Differences[Prime[Range[1000000]]]; Prime[Flatten[Position[Partition[d, 6, 1], {2, 4, 6, 8, 10, 12}]]] (* T. D. Noe, May 23 2011 *) Prime[SequencePosition[Differences[Prime[Range[34*10^5]]],{2,4,6,8,10,12}][[All,1]]] (* Harvey P. Dale, Feb 18 2022 *)
Extensions
Additional cross references from Harvey P. Dale, May 10 2014
Comments