A190838 Initial primes of 8 consecutive primes with 7 consecutive gaps 2, 4, 6, 8, 10, 12, 14.
128981, 21456047, 34864211, 51867197, 55793951, 69726647, 113575727, 180078317, 207664397, 232728647, 342241967, 382427027, 382533311, 470463011, 558791327, 591360851, 603413801, 749930717, 838115711, 926976431, 965761397, 1007421251, 1109867567, 1278189947
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Index entries for primes, gaps between
Crossrefs
Programs
-
Maple
N:=10^8: # to get all terms <= N. Primes:=select(isprime,[seq(i,i=3..N+56,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]- Primes[t+4], Primes[t+6]-Primes[t+5] , Primes[t+7]-Primes[t+6] ]= [2,4,6,8,10,12,14], [$1..nops(Primes)-7])]; # Muniru A Asiru, Aug 04 2017
-
Mathematica
Transpose[Select[Partition[Prime[Range[65000000]],8,1],Differences[#] =={2,4,6,8,10,12,14}&]][[1]] (* Harvey P. Dale, May 10 2014 *)
-
PARI
list(lim)=my(v=List(),p=128981,t); forprime(q=p+2,lim+56, if(q-p-t==2, t+=2; if(t==14, listput(v, q-56); t=0), t=0); p=q); Vec(v) \\ Charles R Greathouse IV, Aug 10 2017
Extensions
Additional cross references from Harvey P. Dale, May 10 2014
Comments