A078847
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <= 6 (i.e., when d = 2, 4 or 6) and forming pattern = [2, 4, 6]; short notation = [246] d-pattern.
Original entry on oeis.org
17, 41, 227, 347, 641, 1091, 1277, 1427, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 20747, 21557, 23741, 25577, 26681, 26711, 27737, 27941, 28277, 29021, 31247, 32057, 32297
Offset: 1
17, 17+2 = 19, 17+2+4 = 23, 17+2+4+6 = 29 are consecutive primes.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets:
A007530[242],
A078847[246],
A078848[264],
A078849[266],
A052378[424],
A078850[426],
A078851[462],
A078852[466],
A078853[624],
A078854[626],
A078855[642],
A078856[646],
A078857[662],
A078858[664],
A033451[666].
Cf.
A190814[2,4,6,8],
A190817[2,4,6,8,10],
A190819[2,4,6,8,10,12],
A190838[2,4,6,8,10,12,14]
-
d = Differences[Prime[Range[10000]]]; Prime[Flatten[Position[Partition[d, 3, 1], {2, 4, 6}]]] (* T. D. Noe, May 23 2011 *)
Transpose[Select[Partition[Prime[Range[10000]],4,1],Differences[#] == {2,4,6}&]][[1]] (* Harvey P. Dale, Aug 07 2013 *)
A190814
Initial primes of 5 consecutive primes with consecutive gaps 2, 4, 6, 8.
Original entry on oeis.org
347, 1427, 2687, 4931, 13901, 21557, 23741, 27941, 28277, 31247, 32057, 33617, 45821, 55661, 55817, 68207, 68897, 91571, 128657, 128981, 167621, 179897, 193871, 205421, 221717, 234191, 239231, 258107, 258611, 259157, 278807, 302831, 305477, 348431, 354371
Offset: 1
Prime(69..73) = {347, 349, 353, 359, 367} and 349 - 347 = 2, 353 - 349 = 4, 359 - 353 = 6, 367 - 359 = 8.
-
N:= 10^6: # to get all terms <= N
Primes:= select(isprime, [seq(i,i=3..N+20,2)]):
Primes[select(t -> [Primes[t+1]-Primes[t],Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2],Primes[t+4]-Primes[t+3]] = [2,4,6,8], [$1..nops(Primes)-4])]; # Robert Israel, Aug 03 2017
-
d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 4, 1], {2, 4, 6, 8}]]] (* T. D. Noe, May 23 2011 *)
Select[Partition[Prime[Range[31000]],5,1],Differences[#]=={2,4,6,8}&][[All,1]] (* Harvey P. Dale, Jul 03 2020 *)
A190817
Initial primes of 6 consecutive primes with consecutive gaps 2,4,6,8,10.
Original entry on oeis.org
13901, 21557, 28277, 55661, 68897, 128981, 221717, 354371, 548831, 665111, 954257, 1164587, 1246367, 1265081, 1538081, 1595051, 1634441, 2200811, 2798921, 2858621, 3053747, 3407081, 3414011, 3967487, 3992201, 4480241, 4608281, 4701731, 4809251, 5029457
Offset: 1
For n = 1, 13901 is in the sequence because 13901, 13903, 13907, 13913, 13921, 13931 are consecutive primes and for n = 2, 21557 is in the sequence since 21557, 21559, 21563, 21569, 21577, 21587 are consecutive primes. - _Muniru A Asiru_, Aug 24 2017
-
K:=3*10^7+1;; # to get all terms <= K.
P:=Filtered([1,3..K],IsPrime);; I:=[2,4,6,8,10];;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);;
P3:=List(Positions(P2,I),i->P[i]); # Muniru A Asiru, Aug 24 2017
-
N:=10^7: # to get all terms <= N.
Primes:=select(isprime,[seq(i,i=3..N+30,2)]):
Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[2,4,6,8,10], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 04 2017
-
d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 5, 1], {2, 4, 6, 8, 10}]]] (* T. D. Noe, May 23 2011 *)
With[{s = Differences@ Prime@ Range[10^6]}, Prime[SequencePosition[s, Range[2, 10, 2]][[All, 1]] ] ] (* Michael De Vlieger, Aug 16 2017 *)
-
lista(nn) = forprime(p=13901, nn, if(nextprime(p+1)==p+2 && nextprime(p+3)==p+6 && nextprime(p+7)==p+12 && nextprime(p+13)==p+20 && nextprime(p+21)==p+30, print1(p", "))); \\ Altug Alkan, Aug 16 2017
A190819
Initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12.
Original entry on oeis.org
128981, 665111, 2798921, 3992201, 5071667, 5093507, 5344247, 10732817, 11920367, 16197947, 16462541, 16655447, 16943471, 21456047, 25793897, 32634311, 34051007, 34864211, 35250431, 38585201, 39898757, 49584371, 50375861, 51867197, 54738767, 55793951
Offset: 1
Prime(12073..12079) = {128981, 128983, 128987, 128993, 129001, 129011, 129023} with first differences {2, 4, 6, 8, 10, 12}.
-
N:=10^7: # to get all terms <= N.
Primes:=select(isprime,[seq(i,i=3..N+42,2)]):
Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],
Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4], Primes[t+6]-Primes[t+5] ]=[2,4,6,8,10,12], [$1..nops(Primes)-6])]; # Muniru A Asiru, Aug 04 2017
-
d = Differences[Prime[Range[1000000]]]; Prime[Flatten[Position[Partition[d, 6, 1], {2, 4, 6, 8, 10, 12}]]] (* T. D. Noe, May 23 2011 *)
Prime[SequencePosition[Differences[Prime[Range[34*10^5]]],{2,4,6,8,10,12}][[All,1]]] (* Harvey P. Dale, Feb 18 2022 *)
A290161
Initial primes of 7 consecutive primes with 6 consecutive gaps 12, 10, 8, 6, 4, 2.
Original entry on oeis.org
752251, 1107751, 4956781, 5647471, 6929401, 10016521, 11516851, 12285631, 18117991, 19280311, 21327961, 21705517, 23946877, 24059011, 24436891, 25976611, 26970751, 29105731, 32254471, 32339521, 32465077, 32542387
Offset: 1
Prime(86279..86285) = {1107751, 1107763, 1107773, 1107781, 1107787, 1107791, 1107793 } and 1107751 + 12 = 1107763, 110763 + 10 = 1107773, 1107773 + 8 = 1107781, 1107781 + 6 = 1107787, 1107787 + 4 = 1107791, 1107791 + 2 = 1107793.
-
P:=Filtered([1..100000000],IsPrime);; I:=Reversed([2,4,6,8,10,12]);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5]]);;
P3:=List(Positions(P2,I),i->P[i]);
A290162
Initial primes of 8 consecutive primes with 7 consecutive gaps 14, 12, 10, 8, 6, 4, 2.
Original entry on oeis.org
5647457, 18117977, 21705503, 32465063, 37091597, 57269633, 90217163, 109933673, 111053573, 124123133, 145594583, 146742863, 163123997, 200416343, 239659907, 245333267, 272213813, 335971367, 350795033, 470838833, 701465327, 749927357, 888801707, 1060690667
Offset: 1
Prime(390215..390222) = {5647457, 5647471, 5647483, 5647493, 5647501, 5647507, 5647511, 5647513} and 5647457 + 14 = 5647471, 5647471 + 12 = 5647483, 5647483 + 10 = 5647493, 5647493 + 8 = 5647501, 5647501 + 6 = 5647507, 5647507 + 4 = 5647511, 5647511 + 2 = 5647513.
-
P:=Filtered([1..100000000],IsPrime);; I:=Reversed([2,4,6,8,10,12,14]);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5],P1[i+6]]);;
P3:=List(Positions(P2,I),i->P[i]); Length(P3);
A286891
Initial primes of 6 consecutive primes with 5 consecutive gaps 10, 8, 6, 4, 2.
Original entry on oeis.org
41203, 556243, 576193, 715849, 752263, 859249, 891799, 1107763, 1191079, 1201999, 1210369, 1510189, 1601599, 1893163, 2530963, 2678719, 2881243, 3257689, 3431479, 3545263, 3792949, 3804919, 4041109, 4479463, 4867309
Offset: 1
Prime(4313..4318) = {41203, 41213, 41221, 41227, 41231, 41233} and 41203 + 10 = 41213, 41213 + 8 = 41221, 41221 + 6 = 41227, 41227 + 4 = 41231, 41231 + 2 = 41233.
Also, prime(68287..68292) = {859249, 859259, 859267, 859273, 859277, 859279} and 859249 + 10 = 859259, 859259 + 8 = 859267, 859267 + 6 = 859273, 859273 + 4 = 859277, 859277 + 2 = 859279.
-
P:=Filtered([1..20000000],IsPrime);; I:=Reversed([2,4,6,8,10]);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);;
P3:=List(Positions(P2,I),i->P[i]);
-
K:=10^7: # to get all terms <= K.
Primes:=select(isprime,[seq(i,i=3..K+30,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[10,8,6,4,2], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 15 2017
-
Select[Partition[Prime[Range[340000]],6,1],Differences[#]=={10,8,6,4,2}&][[All,1]] (* Harvey P. Dale, Aug 22 2018 *)
A281448
Initial primes of 9 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12, 14, 16.
Original entry on oeis.org
113575727, 232728647, 2426256797, 2469604721, 3344410367, 4656098957, 4952808461, 6369321857, 6430890287, 6760087151, 8518049207, 10818813737, 13195845317, 19684555061, 21884908931, 23953276661, 25509639137, 26367829331, 26390212061, 31004257211
Offset: 1
-
Select[Partition[Prime[Range[20*10^7]], 9, 1], Differences[#] == 2*Range[8] &][[All, 1]]
-
g=0; p=2; forprime(q=3,, if(q-p==g+2, g+=2; if(g==16, print1(q-72", "); g=0), g=0); p=q) \\ Charles R Greathouse IV, Jan 28 2017
A289907
Initial primes of 5 consecutive primes with consecutive gaps 8,6,4,2.
Original entry on oeis.org
1979, 5399, 11813, 41213, 42443, 44249, 47129, 55799, 57773, 74699, 79613, 84299, 88643, 126473, 143813, 148913, 167099, 176489, 178799, 178889, 209249, 211859, 237143, 266663, 267629, 272249, 272333, 322229, 344153, 348443, 354023, 375083, 391379, 399263, 422069, 449549, 521519, 529673
Offset: 1
Prime(299..303) = { 1979, 1987, 1993, 1997, 1999 } and 1979 + 8 = 1987, 1987 + 6 = 1993, 1993 + 4 = 1997, 1997 + 2 = 1999.
Also, prime(5852..5856) = { 57773, 57781, 57787, 57791, 57793 } and 5773 + 8 = 57781, 57781 + 6 = 57787, 57787 + 4 = 57791, 57791 + 2 = 57793.
-
I:=[8,6,4,2];;
P:=Filtered([1..1000000],IsPrime);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
P3:=List(Positions(P2,I),i->P[i]);
-
s = Prepend[Differences@ #, First@ #] & /@ Partition[Prime@ Range[10^5], 5, 1]; Select[s, Drop[#, 1] == Range[8, 2, -2] &][[All, 1]] (* Michael De Vlieger, Jul 14 2017 *)
p = {2, 3, 5, 7, 11}; lst = {}; While[ p[[1]] < 530000, If[ Differences@ p == {8, 6, 4, 2}, AppendTo[ lst, p[[1]] ]]; p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; lst (* Robert G. Wilson v, Dec 07 2017 *)
-
is(n) = my(q); forstep(i=8,2,-2,q=nextprime(n+1); if(q-n!=i,return(0)); n=q); return(1) \\ David A. Corneth, Jul 23 2017
A290264
Initial primes of 9 consecutive primes with 8 consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2.
Original entry on oeis.org
32465047, 37091581, 146742847, 239659891, 245333251, 272213797, 1060690651, 1541736811, 2002738207, 2480351677, 2636566351, 4421955007, 6168859201, 8158683037, 10367633527, 10623394321, 11452116817, 11691059641, 11892876841, 13551877831, 15043908637
Offset: 1
32465047 is a member of this sequence because the 9 consecutive primes 32465047, 32465063, 32465077, 32465089, 32465099, 32465107, 32465113, 32465117, 32465119 have consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2. That is, 32465047 + 16 = 32465063, 32465063 + 14 = 32465077, 32465077 + 12 = 32465089, 32465089 + 10 = 32465099, 32465099 + 8 = 32465107, 32465107 + 6 = 32465113, 32465113 + 4 = 32465117, 32465117 + 2 = 32465119.
-
P:=Filtered([1..50000000],IsPrime);;I:=Reversed([2,4,6,8,10,12,14,16]);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5],P1[i+6],P1[i+7]]);;
P3:=List(Positions(P2,I),i->P[i]); Length(P3);
Showing 1-10 of 11 results.
Comments