cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A078847 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <= 6 (i.e., when d = 2, 4 or 6) and forming pattern = [2, 4, 6]; short notation = [246] d-pattern.

Original entry on oeis.org

17, 41, 227, 347, 641, 1091, 1277, 1427, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 20747, 21557, 23741, 25577, 26681, 26711, 27737, 27941, 28277, 29021, 31247, 32057, 32297
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A022004. - R. J. Mathar, Feb 10 2013
a(n) + 12 is the greatest term in the sequence of 4 consecutive primes with 3 consecutive gaps 2, 4, 6. - Muniru A Asiru, Aug 03 2017

Examples

			17, 17+2 = 19, 17+2+4 = 23, 17+2+4+6 = 29 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].
Cf. A190814[2,4,6,8], A190817[2,4,6,8,10], A190819[2,4,6,8,10,12], A190838[2,4,6,8,10,12,14]

Programs

  • Mathematica
    d = Differences[Prime[Range[10000]]]; Prime[Flatten[Position[Partition[d, 3, 1], {2, 4, 6}]]] (* T. D. Noe, May 23 2011 *)
    Transpose[Select[Partition[Prime[Range[10000]],4,1],Differences[#] == {2,4,6}&]][[1]] (* Harvey P. Dale, Aug 07 2013 *)

Formula

Primes p=prime(i) such that prime(i+1) = p+2, prime(i+2) = p+2+4, prime(i+3) = p+2+4+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Additional cross references from Harvey P. Dale, May 10 2014

A190817 Initial primes of 6 consecutive primes with consecutive gaps 2,4,6,8,10.

Original entry on oeis.org

13901, 21557, 28277, 55661, 68897, 128981, 221717, 354371, 548831, 665111, 954257, 1164587, 1246367, 1265081, 1538081, 1595051, 1634441, 2200811, 2798921, 2858621, 3053747, 3407081, 3414011, 3967487, 3992201, 4480241, 4608281, 4701731, 4809251, 5029457
Offset: 1

Views

Author

Zak Seidov, May 21 2011

Keywords

Comments

a(1) = 13901 = A190814(5) = A187058(7) = A078847(24).
a(n) + 30 is the greatest term in the sequence of 6 consecutive primes with consecutive gaps 2, 4, 6, 8, 10. - Muniru A Asiru, Aug 10 2017

Examples

			For n = 1, 13901 is in the sequence because 13901, 13903, 13907, 13913, 13921, 13931 are consecutive primes and for n = 2, 21557 is in the sequence since 21557, 21559, 21563, 21569, 21577, 21587 are consecutive primes. - _Muniru A Asiru_, Aug 24 2017
		

Crossrefs

Programs

  • GAP
    K:=3*10^7+1;; # to get all terms <= K.
    P:=Filtered([1,3..K],IsPrime);; I:=[2,4,6,8,10];;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);;
    P3:=List(Positions(P2,I),i->P[i]);  # Muniru A Asiru, Aug 24 2017
  • Maple
    N:=10^7: # to get all terms <= N.
    Primes:=select(isprime,[seq(i,i=3..N+30,2)]):
    Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[2,4,6,8,10], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 04 2017
  • Mathematica
    d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 5, 1], {2, 4, 6, 8, 10}]]] (* T. D. Noe, May 23 2011 *)
    With[{s = Differences@ Prime@ Range[10^6]}, Prime[SequencePosition[s, Range[2, 10, 2]][[All, 1]] ] ] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    lista(nn) = forprime(p=13901, nn, if(nextprime(p+1)==p+2 && nextprime(p+3)==p+6 && nextprime(p+7)==p+12 && nextprime(p+13)==p+20 && nextprime(p+21)==p+30, print1(p", "))); \\ Altug Alkan, Aug 16 2017
    

Extensions

Additional cross references from Harvey P. Dale, May 10 2014

A190819 Initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12.

Original entry on oeis.org

128981, 665111, 2798921, 3992201, 5071667, 5093507, 5344247, 10732817, 11920367, 16197947, 16462541, 16655447, 16943471, 21456047, 25793897, 32634311, 34051007, 34864211, 35250431, 38585201, 39898757, 49584371, 50375861, 51867197, 54738767, 55793951
Offset: 1

Views

Author

Zak Seidov, May 21 2011

Keywords

Comments

Subsequence of A190817, a(1) = 128981 = A190817(6).
a(n) + 42 is the greatest term in the sequence of 7 consecutive primes with 6 consecutive gaps 2, 4, 6, 8, 10, 12. - Muniru A Asiru, Aug 10 2017

Examples

			Prime(12073..12079) = {128981, 128983, 128987, 128993, 129001, 129011, 129023} with first differences {2, 4, 6, 8, 10, 12}.
		

Crossrefs

Programs

  • Maple
    N:=10^7: # to get all terms <= N.
    Primes:=select(isprime,[seq(i,i=3..N+42,2)]):
    Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],
    Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4], Primes[t+6]-Primes[t+5] ]=[2,4,6,8,10,12], [$1..nops(Primes)-6])]; # Muniru A Asiru, Aug 04 2017
  • Mathematica
    d = Differences[Prime[Range[1000000]]]; Prime[Flatten[Position[Partition[d, 6, 1], {2, 4, 6, 8, 10, 12}]]] (* T. D. Noe, May 23 2011 *)
    Prime[SequencePosition[Differences[Prime[Range[34*10^5]]],{2,4,6,8,10,12}][[All,1]]] (* Harvey P. Dale, Feb 18 2022 *)

Extensions

Additional cross references from Harvey P. Dale, May 10 2014

A190838 Initial primes of 8 consecutive primes with 7 consecutive gaps 2, 4, 6, 8, 10, 12, 14.

Original entry on oeis.org

128981, 21456047, 34864211, 51867197, 55793951, 69726647, 113575727, 180078317, 207664397, 232728647, 342241967, 382427027, 382533311, 470463011, 558791327, 591360851, 603413801, 749930717, 838115711, 926976431, 965761397, 1007421251, 1109867567, 1278189947
Offset: 1

Views

Author

Zak Seidov, May 21 2011

Keywords

Comments

a(1) = 128981 = A190819(1), a(2) = 21456047 = A190819(14).
a(n) + 56 is the greatest term in the sequence of 8 consecutive primes with 7 consecutive gaps 2, 4, 6, 8, 10, 12, 14. - Muniru A Asiru, Aug 10 2017

Crossrefs

Subsequence of A190819.
Subsequence of A187060. - Michel Marcus, Aug 10 2017

Programs

  • Maple
    N:=10^8:  # to get all terms <= N.
    Primes:=select(isprime,[seq(i,i=3..N+56,2)]):
    Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],
      Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-
      Primes[t+4], Primes[t+6]-Primes[t+5] , Primes[t+7]-Primes[t+6] ]=
    [2,4,6,8,10,12,14], [$1..nops(Primes)-7])]; # Muniru A Asiru, Aug 04 2017
  • Mathematica
    Transpose[Select[Partition[Prime[Range[65000000]],8,1],Differences[#] =={2,4,6,8,10,12,14}&]][[1]] (* Harvey P. Dale, May 10 2014 *)
  • PARI
    list(lim)=my(v=List(),p=128981,t); forprime(q=p+2,lim+56, if(q-p-t==2, t+=2; if(t==14, listput(v, q-56); t=0), t=0); p=q); Vec(v) \\ Charles R Greathouse IV, Aug 10 2017

Extensions

Additional cross references from Harvey P. Dale, May 10 2014

A290161 Initial primes of 7 consecutive primes with 6 consecutive gaps 12, 10, 8, 6, 4, 2.

Original entry on oeis.org

752251, 1107751, 4956781, 5647471, 6929401, 10016521, 11516851, 12285631, 18117991, 19280311, 21327961, 21705517, 23946877, 24059011, 24436891, 25976611, 26970751, 29105731, 32254471, 32339521, 32465077, 32542387
Offset: 1

Views

Author

Muniru A Asiru, Jul 22 2017

Keywords

Comments

All terms = {1,7} mod 30.
For initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12 see A190819.

Examples

			Prime(86279..86285) = {1107751, 1107763, 1107773, 1107781, 1107787, 1107791, 1107793 } and 1107751 + 12 = 1107763, 110763 + 10 = 1107773, 1107773 + 8 = 1107781, 1107781 + 6 = 1107787, 1107787 + 4 = 1107791, 1107791 + 2 = 1107793.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..100000000],IsPrime);; I:=Reversed([2,4,6,8,10,12]);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5]]);;
    P3:=List(Positions(P2,I),i->P[i]);

A290162 Initial primes of 8 consecutive primes with 7 consecutive gaps 14, 12, 10, 8, 6, 4, 2.

Original entry on oeis.org

5647457, 18117977, 21705503, 32465063, 37091597, 57269633, 90217163, 109933673, 111053573, 124123133, 145594583, 146742863, 163123997, 200416343, 239659907, 245333267, 272213813, 335971367, 350795033, 470838833, 701465327, 749927357, 888801707, 1060690667
Offset: 1

Views

Author

Muniru A Asiru, Jul 22 2017

Keywords

Comments

All terms = {17,23} mod 30.
For initial primes of 8 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12, 14 see A190838.

Examples

			Prime(390215..390222) = {5647457, 5647471, 5647483, 5647493, 5647501, 5647507, 5647511, 5647513} and 5647457 + 14 = 5647471, 5647471 + 12 = 5647483, 5647483 + 10 = 5647493, 5647493 + 8 = 5647501, 5647501 + 6 = 5647507, 5647507 + 4 = 5647511, 5647511 + 2 = 5647513.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..100000000],IsPrime);; I:=Reversed([2,4,6,8,10,12,14]);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;  Collected(last);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5],P1[i+6]]);;
    P3:=List(Positions(P2,I),i->P[i]); Length(P3);

Extensions

a(8)-a(24) from Giovanni Resta, Jul 25 2017

A286891 Initial primes of 6 consecutive primes with 5 consecutive gaps 10, 8, 6, 4, 2.

Original entry on oeis.org

41203, 556243, 576193, 715849, 752263, 859249, 891799, 1107763, 1191079, 1201999, 1210369, 1510189, 1601599, 1893163, 2530963, 2678719, 2881243, 3257689, 3431479, 3545263, 3792949, 3804919, 4041109, 4479463, 4867309
Offset: 1

Views

Author

Muniru A Asiru, Jul 22 2017

Keywords

Comments

All terms = {13,19} mod 30.
For initial primes of 6 consecutive primes with consecutive gaps 2, 4, 6, 8, 10 see A190817.

Examples

			Prime(4313..4318) = {41203, 41213, 41221, 41227, 41231, 41233} and 41203 + 10 = 41213, 41213 + 8 = 41221, 41221 + 6 = 41227, 41227 + 4 = 41231, 41231 + 2 = 41233.
Also, prime(68287..68292) = {859249, 859259, 859267, 859273, 859277, 859279} and 859249 + 10 = 859259, 859259 + 8 = 859267, 859267 + 6 = 859273, 859273 + 4 = 859277, 859277 + 2 = 859279.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..20000000],IsPrime);;  I:=Reversed([2,4,6,8,10]);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);;
    P3:=List(Positions(P2,I),i->P[i]);
  • Maple
    K:=10^7: # to get all terms <= K.
    Primes:=select(isprime,[seq(i,i=3..K+30,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[10,8,6,4,2], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 15 2017
  • Mathematica
    Select[Partition[Prime[Range[340000]],6,1],Differences[#]=={10,8,6,4,2}&][[All,1]] (* Harvey P. Dale, Aug 22 2018 *)

A281448 Initial primes of 9 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12, 14, 16.

Original entry on oeis.org

113575727, 232728647, 2426256797, 2469604721, 3344410367, 4656098957, 4952808461, 6369321857, 6430890287, 6760087151, 8518049207, 10818813737, 13195845317, 19684555061, 21884908931, 23953276661, 25509639137, 26367829331, 26390212061, 31004257211
Offset: 1

Views

Author

Harvey P. Dale, Jan 27 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[20*10^7]], 9, 1], Differences[#] == 2*Range[8] &][[All, 1]]
  • PARI
    g=0; p=2; forprime(q=3,, if(q-p==g+2, g+=2; if(g==16, print1(q-72", "); g=0), g=0); p=q) \\ Charles R Greathouse IV, Jan 28 2017

Extensions

a(10)-a(20) from Charles R Greathouse IV, Jan 28 2017

A289907 Initial primes of 5 consecutive primes with consecutive gaps 8,6,4,2.

Original entry on oeis.org

1979, 5399, 11813, 41213, 42443, 44249, 47129, 55799, 57773, 74699, 79613, 84299, 88643, 126473, 143813, 148913, 167099, 176489, 178799, 178889, 209249, 211859, 237143, 266663, 267629, 272249, 272333, 322229, 344153, 348443, 354023, 375083, 391379, 399263, 422069, 449549, 521519, 529673
Offset: 1

Views

Author

Muniru A Asiru, Jul 14 2017

Keywords

Comments

All terms = {23, 29} mod 30.
For initial primes of 5 consecutive primes with consecutive gaps 2,4,6,8 see A190814.
Number of terms less than 10^k: 0, 0, 0, 2, 13, 65, 317, 1563, 8671, 50643, ..., . - Robert G. Wilson v, Dec 07 2017

Examples

			Prime(299..303) = { 1979, 1987, 1993, 1997, 1999 } and 1979 + 8 = 1987, 1987 + 6 = 1993, 1993 + 4 = 1997, 1997 + 2 = 1999.
Also, prime(5852..5856) = { 57773, 57781, 57787, 57791, 57793 } and 5773 + 8 = 57781, 57781 + 6 = 57787, 57787 + 4 = 57791, 57791 + 2 = 57793.
		

Crossrefs

Programs

  • GAP
    I:=[8,6,4,2];;
    P:=Filtered([1..1000000],IsPrime);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;  Collected(last);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
    P3:=List(Positions(P2,I),i->P[i]);
    
  • Mathematica
    s = Prepend[Differences@ #, First@ #] & /@ Partition[Prime@ Range[10^5], 5, 1]; Select[s, Drop[#, 1] == Range[8, 2, -2] &][[All, 1]] (* Michael De Vlieger, Jul 14 2017 *)
    p = {2, 3, 5, 7, 11}; lst = {}; While[ p[[1]] < 530000, If[ Differences@ p == {8, 6, 4, 2}, AppendTo[ lst, p[[1]] ]]; p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; lst (* Robert G. Wilson v, Dec 07 2017 *)
  • PARI
    is(n) = my(q); forstep(i=8,2,-2,q=nextprime(n+1); if(q-n!=i,return(0)); n=q); return(1) \\ David A. Corneth, Jul 23 2017

A290264 Initial primes of 9 consecutive primes with 8 consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2.

Original entry on oeis.org

32465047, 37091581, 146742847, 239659891, 245333251, 272213797, 1060690651, 1541736811, 2002738207, 2480351677, 2636566351, 4421955007, 6168859201, 8158683037, 10367633527, 10623394321, 11452116817, 11691059641, 11892876841, 13551877831, 15043908637
Offset: 1

Views

Author

Muniru A Asiru, Jul 25 2017

Keywords

Comments

All terms = {1,7} mod 30.
For initial primes of 7 consecutive primes with 6 consecutive gaps 12, 10, 8, 6, 4, 2 and 8 consecutive primes with 7 consecutive gaps 14, 12, 10, 8, 6, 4, 2 see A290161 and A290162 respectively.
a(6) > 250000000.

Examples

			32465047 is a member of this sequence because the 9 consecutive primes 32465047, 32465063, 32465077, 32465089, 32465099, 32465107, 32465113, 32465117, 32465119 have consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2. That is, 32465047 + 16 = 32465063, 32465063 + 14 = 32465077, 32465077 + 12 = 32465089, 32465089 + 10 = 32465099, 32465099 + 8 = 32465107, 32465107 + 6 = 32465113, 32465113 + 4 = 32465117, 32465117 + 2 = 32465119.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..50000000],IsPrime);;I:=Reversed([2,4,6,8,10,12,14,16]);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;  Collected(last);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5],P1[i+6],P1[i+7]]);;
    P3:=List(Positions(P2,I),i->P[i]); Length(P3);

Extensions

a(6)-a(21) from Giovanni Resta, Jul 25 2017
Showing 1-10 of 11 results. Next