cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A373578 Expansion of e.g.f. exp(x * (1 + x^2)^2).

Original entry on oeis.org

1, 1, 1, 13, 49, 241, 2401, 13021, 128353, 1346689, 10615681, 140431501, 1544877841, 17576665393, 264566466529, 3226728670621, 48376006929601, 766753039205761, 11052669865900033, 197019825098096269, 3271213100827557361, 56597110823949654001
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x*(1 + x^2)^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 11 2024 *)
  • PARI
    a(n) = n!*sum(k=0, 2*n\5, binomial(2*n-4*k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(2*n/5)} binomial(2*n-4*k,k)/(n-2*k)!.
a(n) == 1 (mod 12).
a(n) = a(n-1) + 6*(n-1)*(n-2)*a(n-3) + 5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5).
a(n) ~ 5^(n/5 - 1/2) * exp(7*5^(-11/5)*n^(1/5) + 2*5^(-3/5)*n^(3/5) - 4*n/5) * n^(4*n/5). - Vaclav Kotesovec, Jun 11 2024

A012150 Expansion of e.g.f. exp(tan(arcsin(x))).

Original entry on oeis.org

1, 1, 1, 4, 13, 76, 421, 3256, 25369, 245008, 2449801, 28441216, 346065061, 4700478784, 67243537453, 1047088053376, 17192488230961, 302112622479616, 5593309059948049, 109527844826856448, 2255588021494237501
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			exp(tan(arcsin(x))) = 1+x+1/2!*x^2+4/3!*x^3+13/4!*x^4+76/5!*x^5...
		

Crossrefs

Programs

  • Maple
    A012150 := proc(n) if n = 0 then 1; else add( (1+(-1)^(n-k)) *binomial((n-2)/2,(n-k)/2)/(2*k!), k=1..n) ; %*n! ; end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[Tan[ArcSin[x]]], {x, 0, 20}], x] (* Or *)
    f[n_] := n! Sum[(1 + (-1)^(n - k)) Binomial[(n - 2)/2, (n - k)/2]/2/k!, {k, n}]; f[0] = 1; Array[f, 21, 0] (* Robert G. Wilson v, Feb 19 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(tan(asin(x))))) \\ Michel Marcus, Oct 30 2022

Formula

From Vladimir Kruchinin, Feb 17 2011: (Start)
a(n) = n!*Sum_{k=1..n} A111959(n-1,k-1)*2^(k-n)/k!.
a(n) = n!*Sum_{k=1..n} (1+(-1)^(n-k))*C((n-2)/2,(n-k)/2)/(2*k!), n>0.
E.g.f.: exp(x/sqrt(1-x^2)). (End)
E.g.f.: S(x) = exp(x/sqrt(1-x^2)) = 1 + 2*(x/sqrt(1-x^2))/(G(0) - x/sqrt(1-x^2)), G(k) = 8*k + 2 + (x^2)/((1-x^2)*(8*k+6) + x^2/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2011
a(n) = (3*n^2 - 12*n + 13)*a(n-2) - 3*(n-4)*(n-3)^2*(n-2)*a(n-4) + (n-6)*(n-5)*(n-4)^2*(n-3)*(n-2)*a(n-6). - Vaclav Kotesovec, Nov 08 2013
a(n) ~ n^(n-1/3) * exp(3/2*n^(1/3)-n) / sqrt(3) * (1 - 19/(36*n^(1/3)) + 553/(2592*n^(2/3))). - Vaclav Kotesovec, Nov 08 2013
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n/2-1,k)/(n-2*k)!. - Seiichi Manyama, Jun 08 2024

Extensions

Name edited by Michel Marcus, Oct 30 2022

A373577 Expansion of e.g.f. exp(x * (1 + x^2)^(3/2)).

Original entry on oeis.org

1, 1, 1, 10, 37, 136, 1261, 6616, 45865, 479872, 3206521, 31165696, 356045581, 3082798720, 37528974757, 443190912256, 4792765859281, 69943918698496, 875123733523825, 11059833224507392, 179428023035501941, 2557848382674927616, 37699048392962570461
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(3*n/2-3*k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*n/2-3*k,k)/(n-2*k)!.
a(n) == 1 mod 9.

A373542 Expansion of e.g.f. exp(x * sqrt(1-x^2)).

Original entry on oeis.org

1, 1, 1, -2, -11, -44, -59, -104, 1513, -4976, 14761, -1005344, -594659, -120135872, -8409491, -19661062784, 461914321, -4406419844864, 8555830993, -1268264427577856, -595229416379, -455779307821067264, -13631036685419, -200172063313066452992
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2024

Keywords

Crossrefs

Cf. A190863.

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (-1)^k*binomial(n/2-k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n/2-k,k)/(n-2*k)!.
a(n) == 1 mod 3.
Showing 1-4 of 4 results.