cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A251249 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the sum of its diagonal elements less than the minimum of its antidiagonal elements.

Original entry on oeis.org

75, 621, 621, 5139, 14265, 5139, 42525, 327753, 327753, 42525, 351891, 7530633, 20904689, 7530633, 351891, 2911869, 173028393, 1333268433, 1333268433, 173028393, 2911869, 24095475, 3975606801, 85032883789, 236035946835
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Table starts
......75........621..........5139............42525...............351891
.....621......14265........327753..........7530633............173028393
....5139.....327753......20904689.......1333268433..........85032883789
...42525....7530633....1333268433.....236035946835.......41786532918513
..351891..173028393...85032883789...41786532918513....20534495636679387
.2911869.3975606801.5423196612609.7397658897202791.10090935221593972941

Examples

			Some solutions for n=2 k=4
..0..0..0..0..0....0..0..0..2..2....0..0..0..2..0....0..0..0..2..0
..0..2..1..1..0....0..0..1..1..2....0..0..0..0..1....0..1..1..1..0
..0..2..1..2..2....0..0..2..1..1....0..2..0..1..2....0..0..0..1..0
		

Crossrefs

Column 1 is A190983(n+2)

Formula

Empirical for column k:
k=1: a(n) = 9*a(n-1) -6*a(n-2)
k=2: a(n) = 27*a(n-1) -94*a(n-2) +36*a(n-3) -4*a(n-4) -36*a(n-5)
k=3: [order 10]
k=4: [order 24]
k=5: [order 51]
Showing 1-2 of 2 results.