A190995 Fibonacci sequence beginning 9, 7.
9, 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, 1118, 1809, 2927, 4736, 7663, 12399, 20062, 32461, 52523, 84984, 137507, 222491, 359998, 582489, 942487, 1524976, 2467463, 3992439, 6459902, 10452341, 16912243, 27364584, 44276827, 71641411, 115918238, 187559649
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[n le 2 select 11-2*n else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
-
Maple
a:= n-> (<<0|1>, <1|1>>^n. <<9, 7>>)[1, 1]: seq(a(n), n=0..36); # Alois P. Heinz, Oct 26 2022
-
Mathematica
LinearRecurrence[{1, 1}, {9, 7}, 100]
-
PARI
a(n)=7*fibonacci(n)+9*fibonacci(n-1) \\ Charles R Greathouse IV, Jun 08 2011
-
SageMath
[7*fibonacci(n) + 9*fibonacci(n-1) for n in range(51)] # G. C. Greubel, Oct 26 2022
Formula
a(n) = ((9+sqrt(5))/2)*((1+sqrt(5))/2)^n + ((9-sqrt(5))/2)*((1-sqrt(5))/2)^n. - Antonio Alberto Olivares
G.f.: (9-2*x)/(1-x-x^2). - Colin Barker, Jan 11 2012
a(n) = 7*Fibonacci(n) + 9*Fibonacci(n-1) = 7*Fibonacci(n+1) + 2*Fibonacci(n-1) = 7*Lucas(n) - 5*Fibonacci(n-1) for n>0. - Wajdi Maaloul, Jun 20 2022
Comments