cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190995 Fibonacci sequence beginning 9, 7.

Original entry on oeis.org

9, 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, 1118, 1809, 2927, 4736, 7663, 12399, 20062, 32461, 52523, 84984, 137507, 222491, 359998, 582489, 942487, 1524976, 2467463, 3992439, 6459902, 10452341, 16912243, 27364584, 44276827, 71641411, 115918238, 187559649
Offset: 0

Views

Author

Keywords

Comments

From Wajdi Maaloul, Jun 20 2022: (Start)
For n>0, 2*a(n) is the number of ways to tile this figure below with squares and dominoes (a strip of length n+1 that begins with a length 3 vertical strip and length 4 one).
_
||
|||
|||_______ _
|||_|||_|...|_|
(End)

Crossrefs

Programs

  • Magma
    [n le 2 select 11-2*n else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
    
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<9, 7>>)[1, 1]:
    seq(a(n), n=0..36);  # Alois P. Heinz, Oct 26 2022
  • Mathematica
    LinearRecurrence[{1, 1}, {9, 7}, 100]
  • PARI
    a(n)=7*fibonacci(n)+9*fibonacci(n-1) \\ Charles R Greathouse IV, Jun 08 2011
    
  • SageMath
    [7*fibonacci(n) + 9*fibonacci(n-1) for n in range(51)] # G. C. Greubel, Oct 26 2022

Formula

a(n) = ((9+sqrt(5))/2)*((1+sqrt(5))/2)^n + ((9-sqrt(5))/2)*((1-sqrt(5))/2)^n. - Antonio Alberto Olivares
G.f.: (9-2*x)/(1-x-x^2). - Colin Barker, Jan 11 2012
a(n) = 7*Fibonacci(n) + 9*Fibonacci(n-1) = 7*Fibonacci(n+1) + 2*Fibonacci(n-1) = 7*Lucas(n) - 5*Fibonacci(n-1) for n>0. - Wajdi Maaloul, Jun 20 2022