A230871
Construct a triangle as in the Comments, read nodes from left to right starting at the root and proceeding downwards.
Original entry on oeis.org
0, 1, 1, 3, 2, 2, 4, 8, 3, 5, 3, 5, 7, 9, 11, 21, 5, 7, 7, 13, 5, 7, 7, 13, 11, 17, 13, 23, 19, 25, 29, 55, 8, 12, 10, 18, 12, 16, 18, 34, 8, 12, 10, 18, 12, 16, 18, 34, 18, 26, 24, 44, 22, 30, 32, 60, 30, 46, 36, 64, 50, 66, 76, 144, 13, 19, 17, 31, 17, 23
Offset: 0
The successive rows are:
0
1
1, 3
2, 2, 4, 8
3, 5, 3, 5, 7, 9, 11, 21
5, 7, 7, 13, 5, 7, 7, 13, 11, 17, 13, 23, 19, 25, 29, 55
...
-
data Dtree = Dtree Dtree (Integer, Integer) Dtree
a230871 n k = a230871_tabf !! n !! k
a230871_row n = a230871_tabf !! n
a230871_tabf = [0] : map (map snd) (rows $ deleham (0, 1)) where
rows (Dtree left (x, y) right) =
[(x, y)] : zipWith (++) (rows left) (rows right)
deleham (x, y) = Dtree
(deleham (y, y + x)) (x, y) (deleham (y, 3 * y - x))
-- Reinhard Zumkeller, Nov 07 2013
-
T:= proc(n, k) T(n, k):= `if`(k=1 and n<2, n, (d->(1+2*d)*
T(n-1, r)+(1-2*d)*T(n-2, iquo(r+1, 2)))(irem(k+1, 2, 'r')))
end:
seq(seq(T(n, k), k=1..max(1, 2^(n-1))), n=0..7); # Alois P. Heinz, Nov 07 2013
-
T[n_, k_] := T[n, k] = If[k==1 && n<2, n, Function[d, r = Quotient[k+1, 2]; (1+2d) T[n-1, r] + (1-2d) T[n-2, Quotient[r+1, 2]]][Mod[k+1, 2]]];
Table[T[n, k], {n, 0, 7}, {k, 1, Max[1, 2^(n-1)]}] // Flatten (* Jean-François Alcover, Apr 11 2017, after Alois P. Heinz *)
A354265
Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.
Original entry on oeis.org
2, 3, 1, 4, 4, 3, 5, 7, 7, 4, 6, 10, 11, 11, 7, 7, 13, 15, 18, 18, 11, 8, 16, 19, 25, 29, 29, 18, 9, 19, 23, 32, 40, 47, 47, 29, 10, 22, 27, 39, 51, 65, 76, 76, 47, 11, 25, 31, 46, 62, 83, 105, 123, 123, 76, 12, 28, 35, 53, 73, 101, 134, 170, 199, 199, 123
Offset: 0
Array starts:
[0] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032
[1] 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... A000032 (shifted)
[2] 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ... A000032 (shifted)
[3] 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, ... A022088
[4] 6, 13, 19, 32, 51, 83, 134, 217, 351, 568, ... A022388
[5] 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, ... A190995
[6] 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, ... A206420
[7] 9, 22, 31, 53, 84, 137, 221, 358, 579, 937, ... A206609
[8] 10, 25, 35, 60, 95, 155, 250, 405, 655, 1060, ...
[9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ...
-
const FibMem = Dict{Int,Tuple{BigInt,BigInt}}()
function FibRec(n::Int)
get!(FibMem, n) do
n == 0 && return (BigInt(0), BigInt(1))
a, b = FibRec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
end
function Lucas(n, k)
k == 0 && return BigInt(n + 2)
k == -1 && return BigInt(2 * n - 1)
k < 0 && return (-1)^k * Lucas(1 - n, -k - 2)
a, b = FibRec(k)
c, d = FibRec(k - 1)
n * (2 * a + b) + 2 * c + d
end
for n in -6:6
println([Lucas(n, k) for k in -6:6])
end
-
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi):
seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10);
-
L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]},
I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ];
Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
(* Alternative: *)
L[n_, k_] := n*LucasL[k + 1] + LucasL[k];
Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
A190996
Fibonacci sequence beginning 10, 7.
Original entry on oeis.org
10, 7, 17, 24, 41, 65, 106, 171, 277, 448, 725, 1173, 1898, 3071, 4969, 8040, 13009, 21049, 34058, 55107, 89165, 144272, 233437, 377709, 611146, 988855, 1600001, 2588856, 4188857, 6777713, 10966570, 17744283, 28710853, 46455136, 75165989, 121621125
Offset: 0
-
[n le 2 select 13-3*n else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
-
seq(coeff(series((10-3*x)/(1-x-x^2),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Jan 22 2019
-
LinearRecurrence[{1, 1}, {10, 7}, 100]
-
a(n)=7*fibonacci(n)+10*fibonacci(n-1) \\ Charles R Greathouse IV, Jun 08 2011
-
[7*fibonacci(n+1) +3*fibonacci(n-1) for n in range(51)] # G. C. Greubel, Oct 26 2022
Showing 1-3 of 3 results.
Comments