A190996 Fibonacci sequence beginning 10, 7.
10, 7, 17, 24, 41, 65, 106, 171, 277, 448, 725, 1173, 1898, 3071, 4969, 8040, 13009, 21049, 34058, 55107, 89165, 144272, 233437, 377709, 611146, 988855, 1600001, 2588856, 4188857, 6777713, 10966570, 17744283, 28710853, 46455136, 75165989, 121621125
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jia Huang, Hecke algebras with independent parameters, arXiv preprint arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.
- Eric Weisstein's World of Mathematics, Kayak Paddle Graph.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[n le 2 select 13-3*n else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
-
Maple
seq(coeff(series((10-3*x)/(1-x-x^2),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Jan 22 2019
-
Mathematica
LinearRecurrence[{1, 1}, {10, 7}, 100]
-
PARI
a(n)=7*fibonacci(n)+10*fibonacci(n-1) \\ Charles R Greathouse IV, Jun 08 2011
-
SageMath
[7*fibonacci(n+1) +3*fibonacci(n-1) for n in range(51)] # G. C. Greubel, Oct 26 2022
Formula
a(n) = (5 + 2*sqrt(5)/5)*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5)/5)*((1 - sqrt(5))/2)^n. - Antonio Alberto Olivares, Jun 07 2011
a(n) = 7*Fibonacci(n) + 10*Fibonacci(n-1). - Charles R Greathouse IV, Jun 08 2011
G.f.: (10-3*x)/(1-x-x^2). - Colin Barker, Jan 11 2012
a(n) = 4*Fibonacci(n+1) + 3*LucasL(n). - G. C. Greubel, Oct 26 2022
Comments