cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A297845 Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Jan 10 2018

Keywords

Comments

For any number n > 0, let f(n) be the polynomial in a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials in a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).
This table has many similarities with A248601.
For any n > 0 and m > 0, f(n * m) = f(n) + f(m).
Also, f(1) = 0 and f(2) = 1.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
See A297473 for the main diagonal of T.
As a binary operation, T(.,.) is related to A306697(.,.) and A329329(.,.). When their operands are terms of A050376 (sometimes called Fermi-Dirac primes) the three operations give the same result. However the rest of the multiplication table for T(.,.) can be derived from these results because T(.,.) distributes over integer multiplication (A003991), whereas for A306697 and A329329, the equivalent derivation uses distribution over A059896(.,.) and A059897(.,.) respectively. - Peter Munn, Mar 25 2020
From Peter Munn, Jun 16 2021: (Start)
The operation defined by this sequence can be extended to be the multiplicative operator of a ring over the positive rationals that is isomorphic to the polynomial ring Z[x]. The extended function f (described in the author's original comments) is the isomorphism we use, and it has the same relationship with the extended operation that exists between their unextended equivalents.
Denoting this extension of T(.,.) as t_Q(.,.), we get t_Q(n, 1/k) = t_Q(1/n, k) = 1/T(n, k) and t_Q(1/n, 1/k) = T(n, k) for positive integers n and k. The result for other rationals is derived from the distributive property: t_Q(q, r*s) = t_Q(q, r) * t_Q(q, s); t_Q(q*r, s) = t_Q(q, s) * t_Q(r, s). This may look unusual because standard multiplication of rational numbers takes on the role of the ring's additive group.
There are many OEIS sequences that can be shown to be a list of the integers in an ideal of this ring. See the cross-references.
There are some completely additive sequences that similarly define by extension completely additive functions on the positive rationals that can be shown to be homomorphisms from this ring onto the integer ring Z, and these functions relate to some of the ideals. For example, the extended function of A048675, denoted A048675_Q, maps i/j to A048675(i) - A048675(j) for positive integers i and j. For any positive integer k, the set {r rational > 0 : k divides A048675_Q(r)} forms an ideal of the ring; for k=2 and k=3 the integers in this ideal are listed in A003159 and A332820 respectively.
(End)

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8    9    10
  ---+------------------------------------------------
    1|  1   1   1    1    1    1    1     1    1     1  -> A000012
    2|  1   2   3    4    5    6    7     8    9    10  -> A000027
    3|  1   3   5    9    7   15   11    27   25    21  -> A003961
    4|  1   4   9   16   25   36   49    64   81   100  -> A000290
    5|  1   5   7   25   11   35   13   125   49    55  -> A357852
    6|  1   6  15   36   35   90   77   216  225   210  -> A191002
    7|  1   7  11   49   13   77   17   343  121    91
    8|  1   8  27   64  125  216  343   512  729  1000  -> A000578
    9|  1   9  25   81   49  225  121   729  625   441
   10|  1  10  21  100   55  210   91  1000  441   550
From _Peter Munn_, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
   n      f(n)        n           f(n)
   1         0       16              4
   2         1       17            x^6
   3         x       21        x^3 + x
   4         2       25           2x^2
   5       x^2       27             3x
   6     x + 1       35      x^3 + x^2
   7       x^3       36         2x + 2
   8         3       49           2x^3
   9        2x       55      x^4 + x^2
  10   x^2 + 1       64              6
  11       x^4       77      x^4 + x^3
  12     x + 2       81             4x
  13       x^5       90   x^2 + 2x + 1
  15   x^2 + x       91      x^5 + x^3
(End)
		

Crossrefs

Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Related binary operations: A003991, A306697/A059896, A329329/A059897.

Programs

  • PARI
    T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))

Formula

T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A001222(T(n, k)) = A001222(n) * A001222(k),
- A055396(T(n, k)) = A055396(n) + A055396(k) - 1 when n > 1 and k > 1,
- A061395(T(n, k)) = A061395(n) + A061395(k) - 1 when n > 1 and k > 1,
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(A000040(n)^i, A000040(k)^j) = A000040(n + k - 1)^(i * j) for any i >= 0 and j >= 0.
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
A104244(m, T(n, k)) = A104244(m, n) * A104244(m, k).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
A195017(T(n, k)) = A195017(n) * A195017(k).
A248663(T(n, k)) = A048720(A248663(n), A248663(k)).
T(n, k) = A306697(n, k) if and only if T(n, k) = A329329(n, k).
A007913(T(n, k)) = A007913(T(A007913(n), A007913(k))) = A007913(A329329(n, k)).
(End)

Extensions

New name from Peter Munn, Jul 17 2021

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A349745 Numbers k for which k * gcd(sigma(k), A003961(k)) is equal to sigma(k) * gcd(k, A003961(k)), where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 120, 216, 672, 2464, 22176, 228480, 523776, 640640, 837760, 5581440, 5765760, 7539840, 12999168, 19603584, 33860736, 38342304, 71344000, 95472000, 102136320, 197308800, 220093440, 345080736, 459818240, 807009280, 975576960, 1476304896, 1510831360, 1773584640
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2021

Keywords

Comments

Numbers k for which k * A342671(k) = A000203(k) * A322361(k).
Numbers k such that gcd(A064987(k), A191002(k)) = gcd(A064987(k), A341529(k)).
Obviously, all odd terms in this sequence must be squares.
All the terms k of A005820 that satisfy A007949(k) < A007814(k) [i.e., whose 3-adic valuation is strictly less than their 2-adic valuation] are also terms of this sequence. Incidentally, the first six known terms of A005820 satisfy this condition, while on the other hand, any hypothetical odd 3-perfect number would be excluded from this sequence. Also, as a corollary, any hypothetical 3-perfect numbers of the form 4u+2 must not be multiples of 3 if they are to appear here. Similarly for any k which occurs in A349169, for 2*k to occur in this sequence, it shouldn't be a multiple of 3 and k should also be a term of A191218. See question 2 and its partial answer in A349169.
From Antti Karttunen, Feb 13-20 2022: (Start)
Question: Are all terms/2 (A351548) abundant, from n > 1 onward?
Note that of the 65 known 5-multiperfect numbers, all others except these three 1245087725796543283200, 1940351499647188992000, 4010059765937523916800 are also included in this sequence. The three exceptions are distinguished by the fact that their 3 and 5-adic valuations are equal. In 62 others the former is larger.
If k satisfying the condition were of the form 4u+2, then it should be one of the terms of A191218 doubled as only then both k and sigma(k) are of the form 4u+2, with equal 2-adic valuations for both. More precisely, one of the terms of A351538.
(End)

Crossrefs

Cf. also A349169, A349746, A351458, A351549 for other variants.
Subsequence of A351554 and also of its subsequence A351551.
Cf. A351459 (subsequence, intersection with A351458), A351548 (terms halved).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[1] = True; q[n_] := n * GCD[(s = Times @@ f1 @@@ (f = FactorInteger[n])), (r = Times @@ f2 @@@ f)] == s*GCD[n, r]; Select[Range[10^6], q] (* Amiram Eldar, Nov 29 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349745(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == (s*gcd(n,u))); };

Formula

For all n >= 1, A007814(A000203(a(n))) = A007814(a(n)). [sigma preserves the 2-adic valuation of the terms of this sequence]

A356164 a(n) is the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 2, 2, 4, 3, 2, 5, 8, 4, 6, 7, 4, 11, 10, 3, 16, 13, 4, 17, 12, 10, 14, 19, 8, 9, 22, 8, 20, 23, 6, 29, 32, 14, 26, 5, 4, 31, 34, 22, 24, 37, 10, 41, 28, 6, 38, 43, 16, 25, 18, 26, 44, 47, 8, 21, 40, 34, 46, 53, 12, 59, 58, 20, 64, 33, 14, 61, 52, 38, 10, 67, 8, 71, 62, 9, 68, 7, 22, 73, 48, 16, 74, 79, 20, 39, 82
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2022

Keywords

Comments

a(n) is the smallest positive k such that A191002(k) is a multiple of n.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A356164(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(k)));

Formula

a(n) = n - A356165(n).
For n >= 2, a(A000040(n)) = A000040(n-1).

A356166 Greatest common divisor of n and the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 3, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 32, 1, 2, 5, 4, 1, 2, 1, 8, 1, 2, 1, 4, 3, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 1, 64, 1, 2, 1, 4, 1, 10, 1, 8, 1, 2, 3, 4, 7, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 5
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2022

Keywords

Crossrefs

Cf. A003961, A191002, A356164, A356165, A356167, A356168, A356171 (positions of 1's), A356172.
Cf. also A345992, A356151.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A356166(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(gcd(n,k))));

Formula

a(n) = gcd(n, A356164(n)) = gcd(n, A356165(n)) = gcd(A356164(n), A356165(n)).

A356165 a(n) = n minus the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 2, 0, 5, 4, 4, 8, 2, 4, 12, 0, 4, 14, 2, 8, 11, 8, 4, 16, 16, 4, 19, 8, 6, 24, 2, 0, 19, 8, 30, 32, 6, 4, 17, 16, 4, 32, 2, 16, 39, 8, 4, 32, 24, 32, 25, 8, 6, 46, 34, 16, 23, 12, 6, 48, 2, 4, 43, 0, 32, 52, 6, 16, 31, 60, 4, 64, 2, 12, 66, 8, 70, 56, 6, 32, 65, 8, 4, 64, 46, 4, 41, 32, 6, 84, 36
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2022

Keywords

Crossrefs

Cf. A000079 (positions of zeros), A000720, A001223, A003961, A191002, A356164, A356166.
Cf. also A355945.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A356165(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(n-k)));

Formula

a(n) = n - A356164(n).
For all odd primes p, a(p) = A001223(A000720(p)-1).

A356167 Greatest common divisor of A003961(n) and the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 11, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A356167(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(gcd(A003961(n),k))));

Formula

a(n) = gcd(A003961(n), A356164(n)).

A200746 Completely multiplicative function with a(prime(k)) = prime(k)*prime(k-1), a(2) = 2.

Original entry on oeis.org

1, 2, 6, 4, 15, 12, 35, 8, 36, 30, 77, 24, 143, 70, 90, 16, 221, 72, 323, 60, 210, 154, 437, 48, 225, 286, 216, 140, 667, 180, 899, 32, 462, 442, 525, 144, 1147, 646, 858, 120, 1517, 420, 1763, 308, 540, 874, 2021, 96, 1225, 450, 1326, 572, 2491, 432, 1155, 280, 1938
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a200746[n_Integer] := Block[{f, p, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 2,
        True, x NextPrime[x, -1]];
      a[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
    a /@ Range[n]]; a200746[57] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    a(n)=local(fm=factor(n));prod(k=1,matsize(fm)[1],(fm[k,1]*if(fm[k,1]==2,1,precprime(fm[k,1]-1)))^fm[k,2])
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A200746 n) (if (<= n 2) n (* n (A064989 n)))) ;; Antti Karttunen, Dec 18 2014

Formula

a(n) = n * A064989(n).
Sum_{n>=1} 1/a(n) = 2/Product_{k>=1} (1 - 1/(prime(k)*prime(k+1))) = 2.75321091... . - Amiram Eldar, Jan 07 2023
Showing 1-10 of 10 results.