cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191063 Primes that are not squares mod 19.

Original entry on oeis.org

2, 3, 13, 29, 31, 37, 41, 53, 59, 67, 71, 79, 89, 97, 103, 107, 109, 113, 127, 151, 167, 173, 179, 181, 193, 211, 223, 227, 241, 257, 269, 281, 293, 307, 317, 331, 337, 373, 379, 383, 401, 409, 421, 431, 433, 439, 449, 487, 509, 521, 523, 547, 563, 569, 599
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Inert rational primes in the field Q(sqrt(-19)). - N. J. A. Sloane, Dec 25 2017 [Corrected by Jianing Song, Dec 24 2018]
Primes p such that p^9 == -1 (mod 19). Primes congruent to {2, 3, 8, 10, 12, 13, 14, 15, 18} modulo 19. - Jianing Song, Dec 24 2018

Programs

  • Magma
    [p: p in PrimesUpTo(599) | JacobiSymbol(p, 19) eq -1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,19]==-1&]
    Select[Prime[Range[150]],PowerMod[#,9,19]==18&] (* Harvey P. Dale, Jun 29 2025 *)
  • PARI
    isok(p) = isprime(p) && !issquare(Mod(p, 19)); \\ Michel Marcus, Dec 25 2018