cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A043306 Sum of all digits in all base-b representations for n, for 2 <= b <= n.

Original entry on oeis.org

1, 3, 4, 8, 10, 16, 17, 21, 25, 35, 34, 46, 52, 60, 58, 74, 73, 91, 92, 104, 114, 136, 128, 144, 156, 168, 171, 199, 193, 223, 221, 241, 257, 281, 261, 297, 315, 339, 333, 373, 367, 409, 416, 430, 452, 498, 472, 508, 515, 547, 556, 608, 598, 638, 634, 670, 698, 756, 717, 777
Offset: 2

Views

Author

Keywords

Examples

			5 = 101_2 = 12_3 = 11_4 = 10_5. Thus a(5) = 2 + 3 + 2 + 1 = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Total[First[RealDigits[n, i]]], {i, 2, n}], {n, 2, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n) = sum(i=2, n, vecsum(digits(n, i))); \\ Michel Marcus, Jan 03 2017
    
  • PARI
    a(n) = sum(b=2, n, sumdigits(n, b)); \\ Michel Marcus, Aug 18 2017
    
  • Python
    from sympy.ntheory.digits import digits
    def a(n): return sum(sum(digits(n, b)[1:]) for b in range(2, n+1))
    print([a(n) for n in range(2, 62)]) # Michael S. Branicky, Apr 04 2022

Formula

From Vladimir Shevelev, Jun 03 2011: (Start)
a(n) = (n-1)*n - Sum_{i=2..n} (i-1)*Sum_{r>=1} floor(n/i^r).
a(n) <= (n-1)^2*log(n+1)/log(n).
Problem: find a better upper estimate. (End)
From Amiram Eldar, Apr 16 2021: (Start)
a(n) = A014837(n) + 1.
a(n) ~ (1-Pi^2/12)*n^2 + O(n^(3/2)) (Fissum, 2020). (End)

A043000 Number of digits in all base-b representations of n, for 2 <= b <= n.

Original entry on oeis.org

2, 4, 7, 9, 11, 13, 16, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 54, 56, 59, 61, 63, 65, 67, 70, 72, 74, 76, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 2

Views

Author

Keywords

Comments

From A.H.M. Smeets, Dec 14 2019: (Start)
a(n)-a(n-1) >= 2 due to the fact that n = 10_n, so there is an increment of at least 2. If n can be written as a perfect power m^s, an additional +1 comes to it for the representation of n in each base m.
For instance, for n = 729 we have 729 = 3^6 = 9^3 = 27^2, so there is an additional increment of 3. For n = 1296 we have 1296 = 6^4 = 36^2, so there is an additional increment of 2. For n = 4096 we have 4096 = 2^12 = 4^6 = 8^4 = 16^3= 64^2, so there is an additional increment of 5. (End)

Examples

			5 = 101_2 = 12_3 = 11_4 = 10_5. Thus a(5) = 3+2+2+2 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[Floor(Log(i,i*n)):k in [2..n]]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
    
  • Maple
    A043000 := proc(n) add( nops(convert(n,base,b)),b=2..n) ; end proc: # R. J. Mathar, Jun 04 2011
  • Mathematica
    Table[Total[IntegerLength[n,Range[2,n]]],{n,2,60}] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    a(n)=sum(b=2,n,#digits(n,b)) \\ Jeppe Stig Nielsen, Dec 14 2019
    
  • PARI
    a(n)= n-1 +sum(b=2,n,logint(n,b)) \\ Jeppe Stig Nielsen, Dec 14 2019
    
  • PARI
    a(n) = {2*n-2+sum(i=2, logint(n, 2), sqrtnint(n, i)-1)} \\ David A. Corneth, Dec 31 2019
    
  • PARI
    first(n) = my(res = vector(n)); res[1] = 2; for(i = 2, n, inc = numdiv(gcd(factor(i+1)[,2]))+1; res[i] = res[i-1]+inc); res \\ David A. Corneth, Dec 31 2019
  • Python
    def count(n,b):
        c = 0
        while n > 0:
            n, c = n//b, c+1
        return c
    n = 0
    while n < 50:
        n = n+1
        a, b = 0, 1
        while b < n:
            b = b+1
            a = a + count(n,b)
        print(n,a) # A.H.M. Smeets, Dec 14 2019
    

Formula

a(n) = Sum_{i=2..n} floor(log_i(i*n)); a(n) ~ 2*n. - Vladimir Shevelev, Jun 03 2011 [corrected by Vaclav Kotesovec, Apr 05 2021]
a(n) = A070939(n) + A081604(n) + A110591(n) + ... + 1. - R. J. Mathar, Jun 04 2011
From Ridouane Oudra, Nov 13 2019: (Start)
a(n) = Sum_{i=1..n-1} floor(n^(1/i));
a(n) = n - 1 + Sum_{i=1..floor(log_2(n))} floor(n^(1/i) - 1);
a(n) = n - 1 + A255165(n). (End)
If n is in A001597 then a(A001597(m)) - a(A001597(m)-1) = 2 + A253642(m), otherwise a(n) - a(n-1) = 2. - A.H.M. Smeets, Dec 14 2019

A191350 The number of bases not exceeding n+1 in which the expansion of n (i) has only digits <=9 and (ii) represents a prime if digits are concatenated/reinterpreted as decimals.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 2, 2, 3, 3, 2, 4, 2, 4, 4, 5, 3, 7, 4, 6, 6, 8, 4, 7, 5, 6, 6, 8, 4, 9, 4, 9, 7, 7, 4, 11, 5, 9, 6, 8, 4, 13, 4, 8, 7, 10, 5, 10, 5, 8, 7, 9, 4, 14, 5, 8, 8, 11, 4, 12, 4, 10, 8, 8, 5, 15, 6, 8, 6, 13, 4, 14, 5, 10, 6, 8, 6, 17, 5, 8, 7, 12, 6, 13, 5, 11, 8, 11, 4, 15, 5
Offset: 2

Views

Author

Vladimir Shevelev, May 31 2011

Keywords

Examples

			In bases 6, 8, 12 and 14 the digits of n=15 are 15_6=23, 15_8=17, 15_12=13, and 15_14=11. Since in other bases<=16 the expansions of 15 converted to decimal are not primes, a(15)=4.
		

Crossrefs

Programs

  • PARI
    a(n)=my(m,t,k,i);sum(b=2,n+1,k=n;m=0;i=0;while(k,t=k%b;if(t>9,m=0;break);m+=10^i*t;i++;k\=b);isprime(m)) \\ Charles R Greathouse IV, Jun 01 2011

Extensions

a(16)-a(91) from Charles R Greathouse IV, Jun 01 2011
Showing 1-3 of 3 results.