cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191385 Number of dispersed Dyck paths of length n having no ascents of length 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 12, 18, 31, 47, 81, 125, 216, 337, 583, 918, 1590, 2522, 4372, 6977, 12104, 19415, 33703, 54297, 94306, 152507, 265005, 429974, 747450, 1216297, 2115118, 3450817, 6002813, 9816460, 17080924, 27991422, 48718380, 79989880, 139252802, 229034820, 398806718
Offset: 0

Views

Author

Emeric Deutsch, Jun 01 2011

Keywords

Comments

Dispersed Dyck paths are Motzkin paths with no (1,0) steps at positive heights. An ascent is a maximal sequence of consecutive (1,1)-steps.
The number of UU-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are UU-equivalent iff the positions of pattern UU are identical in these paths. - Sergey Kirgizov, Apr 08 2018

Examples

			a(5)=3 because we have HHHHH, HUUDD, and UUDDH, where U=(1,1), D=(1,-1), and H=(1,0).
		

Crossrefs

Programs

  • Maple
    g := (((1-z)^2-sqrt((1+z^2)*(1-3*z^2)))*1/2)/(z*(z^3-(1-z)^2)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 42);
  • Mathematica
    CoefficientList[Series[(((1-x)^2-Sqrt[(1+x^2)*(1-3*x^2)])*1/2)/(x*(x^3-(1-x)^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^N), A001006 = (1 - x - sqrt(1-2*x-3*x^2))/(2*x^2),
         y=subst(A001006, 'x, 'x^2));
      Vec((1+x^2*y) / (1-x+x^2-x^3*y));
    };
    seq(43)  \\ Gheorghe Coserea, Jan 06 2017

Formula

a(n) = A191384(n,0).
G.f.: g(z) = ((1-z)^2 - sqrt((1+z^2)*(1-3*z^2)))/(2*z*(z^3-(1-z)^2)).
a(n-1) = Sum_{m=floor((n+1)/2)..n} ((2*m-n)*sum(j=2*m-n..m, binomial(n-2*m+2*j-1,j-1)*(-1)^(j-m)*binomial(m,j)))/m. - Vladimir Kruchinin, Mar 09 2013
Recurrence: (n+1)*a(n) = 2*(n+1)*a(n-1) + (n-5)*a(n-2) - 3*(n-3)*a(n-3) + (5*n-19)*a(n-4) - 2*(4*n-17)*a(n-5) + 3*(n-5)*a(n-6) - 3*(n-5)*a(n-7). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 3^(n/2+1) * (7*sqrt(3)+12 +(-1)^n*(7*sqrt(3)-12)) / (n^(3/2)*sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
A(x) = (1 + x^2*A001006(x^2))/(1 - x + x^2 - x^3*A001006(x^2)). - Gheorghe Coserea, Jan 06 2017