A191385 Number of dispersed Dyck paths of length n having no ascents of length 1.
1, 1, 1, 1, 2, 3, 5, 7, 12, 18, 31, 47, 81, 125, 216, 337, 583, 918, 1590, 2522, 4372, 6977, 12104, 19415, 33703, 54297, 94306, 152507, 265005, 429974, 747450, 1216297, 2115118, 3450817, 6002813, 9816460, 17080924, 27991422, 48718380, 79989880, 139252802, 229034820, 398806718
Offset: 0
Examples
a(5)=3 because we have HHHHH, HUUDD, and UUDDH, where U=(1,1), D=(1,-1), and H=(1,0).
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patternss, Preprint 2016.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- J.-L. Baril and A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq. 18 (2015) 15.7.1
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
- Helmut Prodinger, Dispersed Dyck paths revisited, arXiv:2402.13026 [math.CO], 2024. See p. 3.
Programs
-
Maple
g := (((1-z)^2-sqrt((1+z^2)*(1-3*z^2)))*1/2)/(z*(z^3-(1-z)^2)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 42);
-
Mathematica
CoefficientList[Series[(((1-x)^2-Sqrt[(1+x^2)*(1-3*x^2)])*1/2)/(x*(x^3-(1-x)^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
-
PARI
seq(N) = { my(x='x+O('x^N), A001006 = (1 - x - sqrt(1-2*x-3*x^2))/(2*x^2), y=subst(A001006, 'x, 'x^2)); Vec((1+x^2*y) / (1-x+x^2-x^3*y)); }; seq(43) \\ Gheorghe Coserea, Jan 06 2017
Formula
a(n) = A191384(n,0).
G.f.: g(z) = ((1-z)^2 - sqrt((1+z^2)*(1-3*z^2)))/(2*z*(z^3-(1-z)^2)).
a(n-1) = Sum_{m=floor((n+1)/2)..n} ((2*m-n)*sum(j=2*m-n..m, binomial(n-2*m+2*j-1,j-1)*(-1)^(j-m)*binomial(m,j)))/m. - Vladimir Kruchinin, Mar 09 2013
Recurrence: (n+1)*a(n) = 2*(n+1)*a(n-1) + (n-5)*a(n-2) - 3*(n-3)*a(n-3) + (5*n-19)*a(n-4) - 2*(4*n-17)*a(n-5) + 3*(n-5)*a(n-6) - 3*(n-5)*a(n-7). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 3^(n/2+1) * (7*sqrt(3)+12 +(-1)^n*(7*sqrt(3)-12)) / (n^(3/2)*sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
Comments