A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).
1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0
Examples
a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2). a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..11
Crossrefs
Programs
-
Magma
[n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)^2*ithprime(n)) end: seq(a(n), n=0..8); # Alois P. Heinz, Mar 05 2020
-
Mathematica
RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *) Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
-
PARI
a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
-
Scheme
;; Two variants, both with memoization-macro definec. (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence. (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
Formula
For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020
Extensions
a(0) added by Peter Munn, Feb 13 2020
Comments