A328013 Decimal expansion of the growth constant for the partial sums of powerful part of n (A057521).
3, 5, 1, 9, 5, 5, 5, 0, 5, 8, 4, 1, 7, 1, 0, 6, 6, 4, 7, 1, 9, 7, 5, 2, 9, 4, 0, 3, 6, 9, 8, 5, 7, 8, 1, 7, 1, 8, 6, 0, 3, 9, 8, 0, 8, 2, 2, 5, 4, 0, 7, 8, 1, 4, 7, 1, 1, 4, 6, 4, 0, 3, 1, 4, 5, 4, 1, 7, 8, 3, 9, 8, 4, 7, 9, 7, 3, 5, 4, 0, 8, 9, 7, 7, 1, 3, 5, 8, 0, 3, 7, 5, 3, 6, 4, 6, 1, 6, 2, 0, 1, 1, 4, 5, 5
Offset: 1
Examples
3.51955505841710664719752940369857817186039808225407...
References
- D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.
Links
- Maurice-Étienne Cloutier, Les parties k-puissante et k-libre d’un nombre, Thèse de doctorat, Université Laval (2018).
- Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, On the powerful and squarefree parts of an integer, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
Programs
-
Mathematica
$MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 0, -2, 0, 1}, {0, 0, 6, 0, -5}, m]; RealDigits[(1 + 2/2^(3/2) - 1/2^(5/2))*(1 + 2/3^(3/2) - 1/3^(5/2))* Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 3, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
-
PARI
prodeulerrat(1 + 2/p^3 - 1/p^5, 1/2) \\ Amiram Eldar, Jun 29 2023
Formula
The constant d1 in the paper by Cloutier et al. such that Sum_{k=1..x} A057521(k) = (d1/3)*x^(3/2) + O(x^(4/3)).
Sum_{k=1..x} 1/A055231(k) = d1*x^(1/2) + O(x^(1/3)).
Equals Product_{primes p} (1 + 2/p^(3/2) - 1/p^(5/2)).
Equals (zeta(3/2)/zeta(3)) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))). - Amiram Eldar, Dec 26 2024
Extensions
More terms from Vaclav Kotesovec, May 29 2020