cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A057521 Powerful (1) part of n: if n = Product_i (pi^ei) then a(n) = Product_{i : ei > 1} (pi^ei); if n=b*c^2*d^3 then a(n)=c^2*d^3 when b is minimized.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 8, 1, 9, 1, 4, 1, 1, 1, 32, 1
Offset: 1

Views

Author

Henry Bottomley, Sep 01 2000

Keywords

Examples

			a(40) = 8 since 40 = 2^3 * 5 so the powerful part is 2^3 = 8.
		

Crossrefs

Programs

  • Maple
    A057521 := proc(n)
        local a,d,e,p;
        a := 1;
        for d in ifactors(n)[2] do
            e := d[1] ;
            p := d[2] ;
            if e > 1 then
                a := a*p^e ;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Jun 09 2016
  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := n/Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 97}] (* Jean-François Alcover, Jun 20 2013 *)
    f[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f~,if(f[i,2]>1,f[i,1]^f[i,2],1)) \\ Charles R Greathouse IV, Aug 13 2013
    
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,2]==1, f[i,1]=1)); factorback(f); \\ Michel Marcus, Jan 29 2021
    
  • Python
    from sympy import factorint, prod
    def a(n): return 1 if n==1 else prod(1 if e==1 else p**e for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A057521(n): return n//prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022

Formula

a(n) = n / A055231(n).
Multiplicative with a(p)=1 and a(p^e)=p^e for e>1. - Vladeta Jovovic, Nov 01 2001
From Antti Karttunen, Nov 22 2017: (Start)
a(n) = A064549(A003557(n)).
A003557(a(n)) = A003557(n).
(End)
a(n) = gcd(n, A003415(n)^k), for all k >= 2. [This formula was found in the form k=3 by Christian Krause's LODA miner. See Ufnarovski and Åhlander paper, Theorem 5 on p. 4 for why this holds] - Antti Karttunen, Mar 09 2021
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/ p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023
From Vaclav Kotesovec, Apr 09 2025, simplified May 11 2025: (Start)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = 3.51955505841710664719752940369857817... = A328013. (End)

A370902 Partial sums of the powerful part function (A057521).

Original entry on oeis.org

1, 2, 3, 7, 8, 9, 10, 18, 27, 28, 29, 33, 34, 35, 36, 52, 53, 62, 63, 67, 68, 69, 70, 78, 103, 104, 131, 135, 136, 137, 138, 170, 171, 172, 173, 209, 210, 211, 212, 220, 221, 222, 223, 227, 236, 237, 238, 254, 303, 328, 329, 333, 334, 361, 362, 370, 371, 372, 373
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} A057521(k).
a(n) = c_1 * n^(3/2) / 3 + c_2 * n^(4/3) / 4 + O(n^(6/5)), where c_1 = A328013 and c_2 are positive constants (Tóth, 2017).
c_2 = zeta(2/3) * Product_{p prime} (1 + 1/p^(4/3) - 2/p^2 - 1/p^(7/3) + 1/p^3) = -2.59305556147555965163... (László Tóth, personal communication). - Amiram Eldar, Mar 07 2024

A368040 The powerful part of the nonsquarefree numbers.

Original entry on oeis.org

4, 8, 9, 4, 16, 9, 4, 8, 25, 27, 4, 32, 36, 8, 4, 9, 16, 49, 25, 4, 27, 8, 4, 9, 64, 4, 72, 25, 4, 16, 81, 4, 8, 9, 4, 32, 49, 9, 100, 8, 108, 16, 4, 9, 8, 121, 4, 125, 9, 128, 4, 27, 8, 4, 144, 49, 4, 25, 8, 9, 4, 32, 81, 4, 8, 169, 9, 4, 25, 16, 36, 8, 4, 27
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A057521 that are larger than 1, since A057521(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powPart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[powPart, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A057521(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = d/(3*(1-1/zeta(2))^(3/2)) = 4.778771..., and d = A328013.

A379579 Numerators of the partial sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 3, 11, 17, 91, 16, 117, 152, 187, 381, 4261, 13553, 178499, 90322, 30441, 35446, 607587, 1300259, 24875091, 25521737, 77027101, 38733998, 895731799, 932913944, 1044460379, 2097501253, 2320594123, 2352464533, 68444564327, 11443370128, 355822756173, 389249504528
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 3/2, 11/6, 17/6, 91/30, 16/5, 117/35, 152/35, 187/35, 381/70, 4261/770, 13553/2310, ...
		

References

  • D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.

Crossrefs

Cf. A055231, A328013, A370900, A370901, A379580 (denominators), A379581.

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A055231(k)).
a(n)/A379580(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = A328013, and B = (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = -2.59305556147555965163... .

A379581 Numerators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 1, 5, -1, 1, -2, 1, -104, 1, -19, 1, -769, -7687, -4916, -261, -1262, -20453, -57923, -1066503, -5979161, -17475593, -8958244, -201189767, -79457304, -42275159, -87410483, -13046193, -23669663, -612055937, -1025912126, -28568429291, -128848674356, -125809879051
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 1/2, 5/6, -1/6, 1/30, -2/15, 1/105, -104/105, 1/105, -19/210, 1/2310, -769/2310, ...
		

Crossrefs

Cf. A055231, A328013, A370900, A370901, A379579, A379582 (denominators).

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)).
a(n)/A379582(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = ((9-12*sqrt(2))/23) * A328013, and B = ((2^(5/3) - 3*2^(1/3) - 1)/(2^(5/3) - 2^(1/3) + 1)) * (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = 1.42776088919948241359... .

A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.

Original entry on oeis.org

1, 1, 1, 15, 1, 1, 1, 49, 35, 1, 1, 15, 1, 1, 1, 603, 1, 35, 1, 15, 1, 1, 1, 49, 99, 1, 181, 15, 1, 1, 1, 2023, 1, 1, 1, 525, 1, 1, 1, 49, 1, 1, 1, 15, 35, 1, 1, 603, 195, 99, 1, 15, 1, 181, 1, 49, 1, 1, 1, 15, 1, 1, 35, 14875, 1, 1, 1, 15, 1, 1, 1, 1715, 1, 1, 99, 15, 1, 1, 1, 603, 3235, 1, 1, 15, 1, 1, 1, 49, 1, 35, 1, 15, 1, 1, 1, 2023, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

Multiplicative because A046644 and A057521 are.

Crossrefs

Cf. A057521, A046644 (denominators).
Cf. also A317935, A318511, A318649.

Programs

  • Mathematica
    ff[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; f[1] = 1; f[n_] := f[n] = 1/2 (a[n] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 11 2025 *)
  • PARI
    up_to = 65537;
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA057521(n)));
    A318650(n) = numerator(v318650_aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057521(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025, simplified May 11 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
Sum_{k=1..n} A318650(k) / A046644(k) ~ n^(3/2) * sqrt(2*f(3/2)/(9*Pi*log(n))) * (1 + (2/3 - gamma - f'(3/2)/(2*f(3/2))) / (2*log(n))), where
f(3/2) = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = A328013 = 3.51955505841710664719752940369857817...
f'(3/2)/f(3/2) = Sum_{p prime} (4*p - 3) * log(p) / (1 - 2*p - p^(5/2)) = -3.90914718020692131140714384422938370058563543737256496...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-6 of 6 results.