cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 101 results. Next

A295294 Sum of the divisors of the powerful part of n: a(n) = A000203(A057521(n)).

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 15, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 15, 31, 1, 40, 7, 1, 1, 1, 63, 1, 1, 1, 91, 1, 1, 1, 15, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 40, 1, 15, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 195, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 15, 1, 13, 1, 7, 1, 1, 1, 63
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #/Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2] ] &, 96] (* Michael De Vlieger, Nov 26 2017, after Jean-François Alcover at A057521 *)
    f[p_, e_] := If[e == 1, 1, (p^(e+1)-1)/(p-1)]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i=1, #p, if(e[i] == 1, 1, (p[i]^(e[i]+1)-1)/(p[i]-1)))}; \\ Amiram Eldar, Oct 08 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A295294(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if e > 1) # Chai Wah Wu, Nov 14 2022
  • Scheme
    (define (A295294 n) (A000203 (A057521 n)))
    ;; With memoization-macro definec:
    (definec (A295294 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (if (= e 1) 1 (/ (- (expt p (+ 1 e)) 1) (- p 1))) (A295294 (A028234 n))))))
    

Formula

Multiplicative with a(p) = 1 and a(p^e) = (p^(e+1)-1)/(p-1) for e > 1.
a(n) = A000203(n) / A092261(n).
From Amiram Eldar, Oct 08 2022: (Start)
a(n) = 1 iff n is squarefree (A005117).
a(n) = A000203(n) iff n is powerful (A001694). (End)
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-2) + 1/p^(2*s-1) - 1/p^(3*s-2)). - Amiram Eldar, Sep 09 2023

A295295 Sum of squarefree divisors of the powerful part of n: a(n) = A048250(A057521(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 8, 4, 18, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Comments

The sum of the squarefree divisors of n whose square divides n. - Amiram Eldar, Oct 13 2023

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#/Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2], # &, SquareFreeQ] &, 105] (* Michael De Vlieger, Nov 26 2017, after Jean-François Alcover at A057521 *)
    f[p_, e_] := If[e == 1, 1, p+1] ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,2]==1, f[i,1]=1)); sumdiv(factorback(f), d, d*issquarefree(d)); \\ Michel Marcus, Jan 29 2021

Formula

Multiplicative with a(p) = 1 and a(p^e) = (p+1) for e > 1.
a(n) = A048250(n) / A092261(n).
a(n) = Sum_{d^2|n} d * mu(d)^2. - Wesley Ivan Hurt, Feb 13 2022
From Amiram Eldar, Sep 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ (3*n/Pi^2) * (log(n) + 3*gamma - 1 - 4*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
a(n) = A048250(n) - A344137(n). - Amiram Eldar, Oct 13 2023

A328013 Decimal expansion of the growth constant for the partial sums of powerful part of n (A057521).

Original entry on oeis.org

3, 5, 1, 9, 5, 5, 5, 0, 5, 8, 4, 1, 7, 1, 0, 6, 6, 4, 7, 1, 9, 7, 5, 2, 9, 4, 0, 3, 6, 9, 8, 5, 7, 8, 1, 7, 1, 8, 6, 0, 3, 9, 8, 0, 8, 2, 2, 5, 4, 0, 7, 8, 1, 4, 7, 1, 1, 4, 6, 4, 0, 3, 1, 4, 5, 4, 1, 7, 8, 3, 9, 8, 4, 7, 9, 7, 3, 5, 4, 0, 8, 9, 7, 7, 1, 3, 5, 8, 0, 3, 7, 5, 3, 6, 4, 6, 1, 6, 2, 0, 1, 1, 4, 5, 5
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2019

Keywords

Examples

			3.51955505841710664719752940369857817186039808225407...
		

References

  • D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 0, -2, 0, 1}, {0, 0, 6, 0, -5}, m]; RealDigits[(1 + 2/2^(3/2) - 1/2^(5/2))*(1 + 2/3^(3/2) - 1/3^(5/2))* Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 3, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 + 2/p^3 - 1/p^5, 1/2) \\ Amiram Eldar, Jun 29 2023

Formula

The constant d1 in the paper by Cloutier et al. such that Sum_{k=1..x} A057521(k) = (d1/3)*x^(3/2) + O(x^(4/3)).
Sum_{k=1..x} 1/A055231(k) = d1*x^(1/2) + O(x^(1/3)).
Equals Product_{primes p} (1 + 2/p^(3/2) - 1/p^(5/2)).
Equals (zeta(3/2)/zeta(3)) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))). - Amiram Eldar, Dec 26 2024

Extensions

More terms from Vaclav Kotesovec, May 29 2020

A370902 Partial sums of the powerful part function (A057521).

Original entry on oeis.org

1, 2, 3, 7, 8, 9, 10, 18, 27, 28, 29, 33, 34, 35, 36, 52, 53, 62, 63, 67, 68, 69, 70, 78, 103, 104, 131, 135, 136, 137, 138, 170, 171, 172, 173, 209, 210, 211, 212, 220, 221, 222, 223, 227, 236, 237, 238, 254, 303, 328, 329, 333, 334, 361, 362, 370, 371, 372, 373
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} A057521(k).
a(n) = c_1 * n^(3/2) / 3 + c_2 * n^(4/3) / 4 + O(n^(6/5)), where c_1 = A328013 and c_2 are positive constants (Tóth, 2017).
c_2 = zeta(2/3) * Product_{p prime} (1 + 1/p^(4/3) - 2/p^2 - 1/p^(7/3) + 1/p^3) = -2.59305556147555965163... (László Tóth, personal communication). - Amiram Eldar, Mar 07 2024

A370903 Partial alternating sums of the powerful part function (A057521).

Original entry on oeis.org

1, 0, 1, -3, -2, -3, -2, -10, -1, -2, -1, -5, -4, -5, -4, -20, -19, -28, -27, -31, -30, -31, -30, -38, -13, -14, 13, 9, 10, 9, 10, -22, -21, -22, -21, -57, -56, -57, -56, -64, -63, -64, -63, -67, -58, -59, -58, -74, -25, -50, -49, -53, -52, -79, -78, -86, -85
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[(-1)^(# + 1) * pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * pfp(k); print1(s, ", "))};

Formula

a(n) = c_1 * n^(3/2) + c_2 * n^(4/3) + O(n^(6/5)), where c_1 = (zeta(3/2)/(3*zeta(3))) * ((9-12*sqrt(2))/23) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))) = -0.40656281796860400941..., and c_2 = (zeta(4/3)/(4*zeta(2))) * ((2^(5/3)-3*2^(1/3)-1)/(2^(5/3)-2^(1/3)+1)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = -0.52513876339565998938... (Tóth, 2017).

A375142 Numbers whose powerful part (A057521) is a power of a squarefree number that is larger than 1 (A072777).

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Subsequence of A013929 and first differs from it at n = 27: A013929(27) = 72 = 2^3 * 3^2 is not a term of this sequence.
Numbers whose prime factorization has one distinct exponent that does not equal 1.
Numbers that are a product of a squarefree number (A005117) and a power of a different squarefree number that is not squarefree.
The asymptotic density of this sequence is Sum_{k>=2} (d(k)-1)/zeta(2) = 0.36113984820338109927..., where d(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i), if k is even, and d(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i) if k is odd > 1.

Examples

			12 = 2^2 * 3 is a term because its powerful part, 4 = 2^2, is a power of a squarefree number, 2, that is larger than 1.
		

Crossrefs

Subsequence of A013929.
Subsequences: A067259, A072777, A190641, A336591.

Programs

  • Mathematica
    q[n_] := Count[Union[FactorInteger[n][[;; , 2]]], _?(# > 1 &)] == 1; Select[Range[200], q]
  • PARI
    is(k) = {my(e = select(x -> (x > 1), Set(factor(k)[,2]))); #e == 1;}

A326185 a(n) = sigma(n) - A057521(n) - n.

Original entry on oeis.org

-1, 0, 0, -1, 0, 5, 0, -1, -5, 7, 0, 12, 0, 9, 8, -1, 0, 12, 0, 18, 10, 13, 0, 28, -19, 15, -14, 24, 0, 41, 0, -1, 14, 19, 12, 19, 0, 21, 16, 42, 0, 53, 0, 36, 24, 25, 0, 60, -41, 18, 20, 42, 0, 39, 16, 56, 22, 31, 0, 104, 0, 33, 32, -1, 18, 77, 0, 54, 26, 73, 0, 51, 0, 39, 24, 60, 18, 89, 0, 90, -41, 43, 0, 136, 22, 45, 32, 84, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2019

Keywords

Crossrefs

Programs

  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521.
    A326185(n) = ((sigma(n)-A057521(n))-n);

Formula

a(n) = A326184(n) - n = sigma(n) - A057521(n) - n.
a(n) = A001065(n) - A057521(n).

A328014 Numbers whose powerful part (A057521) is larger than their powerfree part (A055231).

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 40, 45, 48, 49, 50, 54, 56, 63, 64, 72, 75, 80, 81, 96, 98, 100, 108, 112, 121, 125, 128, 135, 144, 147, 150, 160, 162, 169, 175, 176, 180, 189, 192, 196, 200, 208, 216, 224, 225, 240, 242, 243, 245, 250, 252, 256, 270
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2019

Keywords

Comments

Differs from A122145(n) at n >= 25.
Cloutier et al. showed that the number of terms of this sequence below x is D0 * x^(3/4) + O(x^(2/3)*log(x)), where D0 is a constant given in A328015.

Examples

			12 is in the sequence since A057521(12) = 4 > A055231(12) = 3.
		

Crossrefs

Programs

  • Mathematica
    funp[p_, e_] := If[e > 1, p^e, 1]; pow[n_] := Times @@ (funp @@@ FactorInteger[n]); aQ[n_] := pow[n] > n/pow[n]; Select[Range[1000], aQ]
  • PARI
    pful(f) = prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); \\ A057521
    pfree(f) = for (k=1, #f~, if (f[k, 2] > 1, f[k, 2] = 0); ); factorback(f); \\ A055231
    isok(n) = my(f=factor(n)); pful(f) > pfree(f); \\ Michel Marcus, Oct 02 2019

A349441 Dirichlet convolution of A057521 (powerful part of n) with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

1, -1, -2, 2, -4, 2, -6, 0, 6, 4, -10, -4, -12, 6, 8, 0, -16, -6, -18, -8, 12, 10, -22, 0, 20, 12, 0, -12, -28, -8, -30, 0, 20, 16, 24, 12, -36, 18, 24, 0, -40, -12, -42, -20, -24, 22, -46, 0, 42, -20, 32, -24, -52, 0, 40, 0, 36, 28, -58, 16, -60, 30, -36, 0, 48, -20, -66, -32, 44, -24, -70, 0, -72, 36, -40, -36
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because A055615 and A057521 are.
Convolving this with Euler phi (A000010) produces A349379.

Crossrefs

Cf. A055615, A057521, A349442 (Dirichlet inverse), A349443 (sum with it).
Cf. also A097945, A349379.

Programs

  • Mathematica
    f[p_, e_] := Which[e > 2, 0, e == 2, p^2 - p, e == 1, 1 - p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A055615(n) = (n*moebius(n));
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    A349441(n) = sumdiv(n,d,A057521(n/d)*A055615(d));

Formula

a(n) = Sum_{d|n} A057521(n/d) * A055615(d).
Multiplicative with a(p^e) = 1 - p is e = 1, p^2 - p if e = 2, and 0 otherwise. - Amiram Eldar, Nov 19 2021

A381312 Numbers whose powerful part (A057521) is a power of a prime with an odd exponent >= 3 (A056824).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536, 544
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Subsequence of A301517 and A374459 and first differs from them at n = 21. A301517(21) = A374459(21) = 216 is not a term of this sequence.
Numbers having exactly one non-unitary prime factor and its multiplicity is odd.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., 2*m+1} with m >= 1, i.e., any number (including zero) of 1's and then a single odd number > 1.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/((p-1)*(p+1)^2) = 0.093382464285953613312...

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 1 && OddQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] % 2 && e[1] > 1 && (#e == 1 || e[2] == 1));
Showing 1-10 of 101 results. Next