cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A092261 Sum of unitary, squarefree divisors of n, including 1.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 1, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 4, 1, 42, 1, 8, 30, 72, 32, 1, 48, 54, 48, 1, 38, 60, 56, 6, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 3, 72, 8, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 1, 74, 114, 4, 20, 96, 168, 80
Offset: 1

Views

Author

Steven Finch, Feb 20 2004

Keywords

Comments

Unitary convolution of the sequence of n*mu^2(n) (absolute values of A055615) and A000012. - R. J. Mathar, May 30 2011

Crossrefs

Programs

  • Mathematica
    Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 79}] (* Michael De Vlieger, Mar 08 2015 *)
    f[p_, e_] := If[e==1, p+1, 1]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 79] (* Amiram Eldar, Mar 01 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 06 2015
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X^3 - p*X^2 - p^2*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
  • Scheme
    ;; This implementation utilizes the memoization-macro definec for which an implementation is available at http://oeis.org/wiki/Memoization#Scheme
    ;; The other functions, A020639, A067029 and A028234 can be found under the respective entries, and should likewise defined with definec:
    (definec (A092261 n) (if (= 1 n) 1 (* (+ 1 (if (> (A067029 n) 1) 0 (A020639 n))) (A092261 (A028234 n))))) ;; Antti Karttunen, Nov 25 2017
    

Formula

Multiplicative with a(p) = p+1 and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Feb 22 2004
From Álvar Ibeas, Mar 06 2015: (Start)
a(n) = a(A055231(n)) = A000203(A055231(n)).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(1-2s)).
(End)
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(A055231(n)).
a(n) = A000203(n) / A295294(n).
a(n) = A048250(n) / A295295(n) = A048250(n) / A048250(A057521(n)), where A057521(n) = A064549(A003557(n)).
(End)
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Jun 10 2020
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(2-3*s) - p^(1-2*s) - p^(2-2*s)). - Vaclav Kotesovec, Aug 20 2021
a(n) = Sum_{d|n, gcd(d,n/d)=1} d * mu(d)^2. - Wesley Ivan Hurt, May 26 2023

A295294 Sum of the divisors of the powerful part of n: a(n) = A000203(A057521(n)).

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 15, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 15, 31, 1, 40, 7, 1, 1, 1, 63, 1, 1, 1, 91, 1, 1, 1, 15, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 40, 1, 15, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 195, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 15, 1, 13, 1, 7, 1, 1, 1, 63
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #/Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2] ] &, 96] (* Michael De Vlieger, Nov 26 2017, after Jean-François Alcover at A057521 *)
    f[p_, e_] := If[e == 1, 1, (p^(e+1)-1)/(p-1)]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i=1, #p, if(e[i] == 1, 1, (p[i]^(e[i]+1)-1)/(p[i]-1)))}; \\ Amiram Eldar, Oct 08 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A295294(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if e > 1) # Chai Wah Wu, Nov 14 2022
  • Scheme
    (define (A295294 n) (A000203 (A057521 n)))
    ;; With memoization-macro definec:
    (definec (A295294 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (if (= e 1) 1 (/ (- (expt p (+ 1 e)) 1) (- p 1))) (A295294 (A028234 n))))))
    

Formula

Multiplicative with a(p) = 1 and a(p^e) = (p^(e+1)-1)/(p-1) for e > 1.
a(n) = A000203(n) / A092261(n).
From Amiram Eldar, Oct 08 2022: (Start)
a(n) = 1 iff n is squarefree (A005117).
a(n) = A000203(n) iff n is powerful (A001694). (End)
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-2) + 1/p^(2*s-1) - 1/p^(3*s-2)). - Amiram Eldar, Sep 09 2023

A344137 Sum of the squarefree divisors of n whose square does not divide n.

Original entry on oeis.org

0, 2, 3, 0, 5, 11, 7, 0, 0, 17, 11, 9, 13, 23, 23, 0, 17, 8, 19, 15, 31, 35, 23, 9, 0, 41, 0, 21, 29, 71, 31, 0, 47, 53, 47, 0, 37, 59, 55, 15, 41, 95, 43, 33, 20, 71, 47, 9, 0, 12, 71, 39, 53, 8, 71, 21, 79, 89, 59, 69, 61, 95, 28, 0, 83, 143, 67, 51, 95, 143, 71, 0, 73
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 16 2021

Keywords

Examples

			a(20) = Sum_{d|20} d * mu(d)^2 * c(20/d^2) = 1*1*0 + 2*1*0 + 4*0*1 + 5*1*1 + 10*1*1 + 20*0*1 = 15.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, SquareFreeQ[#] && ! Divisible[n, #^2] &]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1] + 1) - prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1] + 1));} \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = Sum_{d|n} d * mu(d)^2 * c(n/d^2), where c(n) = ceiling(n) - floor(n).
a(n) = A048250(n) - A295295(n). - Amiram Eldar, Oct 13 2023

A365336 The sum of exponentially odd divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 11, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A295295 at n = 64.
The sum of divisors of the square root of the largest square dividing n is A069290(n).
The number of these divisors is A365335(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*Floor[(e+2)/4] + 1) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(2*((f[i,2]+2)\4) + 1) - f[i,1])/(f[i,1]^2 - 1) + 1);}

Formula

a(n) = A033634(A000188(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(2*floor((e+2)/4) + 1) - p)/(p^2 - 1) + 1. [corrected by Georg Fischer, Oct 07 2023]
Dirichlet g.f.: zeta(s) * zeta(4*s-2) * Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(4*s-2)).
From Vaclav Kotesovec, Sep 02 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(4*s-2) * Product_{p prime} (1 - 1/p^s + 1/p^(2*s-1) - 1/p^(3*s-1) - 1/p^(4*s-2) + 1/p^(5*s-2)).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(4*s-2) * Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)).
Let f(s) = Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)), then Sum_{k=1..n} a(k) ~ Pi^2/12 * n * (f(1) * (log(n) + 3*gamma - 1 + 24*zeta'(2)/Pi^2) + f'(1)), where f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} 2*(4*p-3)*log(p) / (p^3 - 2*p + 1) = 1.617322217899181826790... and gamma is the Euler-Mascheroni constant A001620. (End)

A370783 a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Examples

			Fractions begin with: 1, 1, 1, 3/2, 1, 1, 1, 3/2, 4/3, 1, 1, 3/2, ...
		

Crossrefs

Cf. A005117, A057521, A157289, A295295, A332880, A370784 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332880(A057521(n)).
Let f(n) = a(n)/A370784(n):
f(n) is multiplicative with f(p) = 1 and f(p^e) = 1 + 1/p for e >= 2.
f(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = zeta(3)/zeta(6) = 1.181564... (A157289) (Jakimczuk, 2024).

A370784 a(n) is the denominator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Crossrefs

Cf. A005117, A057521, A295295, A332881, A370783 (numerators).

Programs

  • Mathematica
    a[n_] := Denominator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); denominator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332881(A057521(n)).
a(n) = 1 if n is squarefree (A005117).

A380160 a(n) is the value of the Euler totient function when applied to the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 4, 20, 1, 18, 2, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 18, 1, 4, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 24, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, (p-1)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)));}

Formula

a(n) = A000010(A057521(n)).
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is powerful (A001694).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(e-1) if e >= 2.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(s-1) + 1/p^(2*s-2) - 2/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 2/p^(3/2) - 1/p^2 - 2/p^(5/2)) = 1.96428740396979919886... .
Showing 1-7 of 7 results.