A127730 Triangle read by rows: row n consists of the positive integers m where m+n divides m*n.
2, 6, 4, 12, 20, 3, 6, 12, 30, 42, 8, 24, 56, 18, 72, 10, 15, 40, 90, 110, 4, 6, 12, 24, 36, 60, 132, 156, 14, 35, 84, 182, 10, 30, 60, 210, 16, 48, 112, 240, 272, 9, 18, 36, 63, 90, 144, 306, 342, 5, 20, 30, 60, 80, 180, 380, 28, 42, 126, 420, 22, 99, 220, 462
Offset: 2
Examples
Row 6 is (3,6,12,30) because 6+3 = 9 divides 6*3 = 18, 6+6 = 12 divides 6*6 = 36, 6+12 = 18 divides 6*12 = 72 and 6+30 = 36 divides 6*30 = 180.
Links
- Nathaniel Johnston, Rows n = 2..500, flattened
Programs
-
Maple
for n from 2 to 20 do for m from 1 to n*(n-1) do if(m*n mod (m+n) = 0)then printf("%d, ",m): fi: od: od: # Nathaniel Johnston, Jun 22 2011
-
Mathematica
f[n_] := Select[Range[n^2], Mod[n*#, n + # ] == 0 &];Table[f[n], {n, 2, 24}] // Flatten (* Ray Chandler, Feb 13 2007 *)
-
PARI
arow(n)=local(d,m);d=divisors(n^2);vector(#d\2,k,m=d[ #d\2-k+1];n*(n-m)/m) \\ Franklin T. Adams-Watters, Aug 07 2009
Formula
Let d_n be the sequence of divisors of n^2 that are less than n, in reverse order. Then T(n,k) = n*(n-d_n(k))/d_n(k). - Franklin T. Adams-Watters, Aug 07 2009
Extensions
Extended by Ray Chandler, Feb 13 2007
Comments