cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A127730 Triangle read by rows: row n consists of the positive integers m where m+n divides m*n.

Original entry on oeis.org

2, 6, 4, 12, 20, 3, 6, 12, 30, 42, 8, 24, 56, 18, 72, 10, 15, 40, 90, 110, 4, 6, 12, 24, 36, 60, 132, 156, 14, 35, 84, 182, 10, 30, 60, 210, 16, 48, 112, 240, 272, 9, 18, 36, 63, 90, 144, 306, 342, 5, 20, 30, 60, 80, 180, 380, 28, 42, 126, 420, 22, 99, 220, 462
Offset: 2

Views

Author

Leroy Quet, Jan 26 2007

Keywords

Comments

The maximum term of the n-th row, for n >= 2, is n*(n-1). The minimum term of row n is A063427(n). Row n contains A063647(n) terms (according to a comment by Benoit Cloitre). For p prime, row p^k has k terms. (Each term in row p^k is of the form p^k*(p^j -1), 1 <= j <= k.)

Examples

			Row 6 is (3,6,12,30) because 6+3 = 9 divides 6*3 = 18, 6+6 = 12 divides 6*6 = 36, 6+12 = 18 divides 6*12 = 72 and 6+30 = 36 divides 6*30 = 180.
		

Crossrefs

Programs

  • Maple
    for n from 2 to 20 do for m from 1 to n*(n-1) do if(m*n mod (m+n) = 0)then printf("%d, ",m): fi: od: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[n_] := Select[Range[n^2], Mod[n*#, n + # ] == 0 &];Table[f[n], {n, 2, 24}] // Flatten (* Ray Chandler, Feb 13 2007 *)
  • PARI
    arow(n)=local(d,m);d=divisors(n^2);vector(#d\2,k,m=d[ #d\2-k+1];n*(n-m)/m) \\ Franklin T. Adams-Watters, Aug 07 2009

Formula

Let d_n be the sequence of divisors of n^2 that are less than n, in reverse order. Then T(n,k) = n*(n-d_n(k))/d_n(k). - Franklin T. Adams-Watters, Aug 07 2009

Extensions

Extended by Ray Chandler, Feb 13 2007

A146564 a(n) is the number of solutions of the equation k*n/(k-n) = c. k,c integers.

Original entry on oeis.org

1, 4, 4, 7, 4, 13, 4, 10, 7, 13, 4, 22, 4, 13, 13, 13, 4, 22, 4, 22, 13, 13, 4, 31, 7, 13, 10, 22, 4, 40, 4, 16, 13, 13, 13, 37, 4, 13, 13, 31, 4, 40, 4, 22, 22, 13, 4, 40, 7, 22, 13, 22, 4, 31, 13, 31, 13, 13, 4, 67, 4, 13, 22, 19, 13, 40, 4, 22, 13, 40, 4, 52
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 01 2008

Keywords

Comments

In general, if n is a prime p then a(p)=4, and k is from {p-1, p+1, 2*p, p^2+p}.
In general, if n is a squared prime p^2 then a(p^2)=7, and k is from {p^2-p, p^2-1, p^2+1, p^2+p, p^3-p^2, p^3+p^2, p^4+p^2}.
The sequence counts solutions with k>0 and any sign of c, or, alternatively, solutions with c>0 and any sign of k. If solutions were constrained to k>0 and c>0, A048691 would result. - R. J. Mathar, Nov 21 2008

Examples

			For n=7 we search the number of integer solutions of the equation 7*k/(k-7). This holds for k from {6,8,14,56}. Then a(7)=4. For n=10 we search the number of integer solutions of the equation 10*k/(k-10). This holds for k from {5,6,8,9,11,12,14,15,20,30,35,60,110}. Then a(10)=13.
		

Crossrefs

Cf. A191973.

Programs

  • Magma
    [# [k:k in {1..n^2+n} diff {n}| IsIntegral(k*n/(k-n))]:n in [1..75]]; // Marius A. Burtea, Oct 18 2019
  • Maple
    A146564 := proc(n) local b,d,k,c ; b := numtheory[divisors](n^2) ; kbag := {} ; for d in b do k := d+n ; if k > 0 then kbag := kbag union {k} ; fi ; k := -d+n ; if k > 0 then kbag := kbag union {k} ; fi; end do; RETURN(nops(kbag)) ; end: for n from 1 to 800 do printf("%d,",A146564(n)) ; od: # R. J. Mathar, Nov 21 2008
  • Mathematica
    psi[n_] := Module[{pp, ee}, {pp, ee} = Transpose[FactorInteger[n]]; If[Max[pp] == 3, n, Times@@(pp+1) * Times@@(pp^(ee-1))]];
    a[n_] := Sum[psi[2^PrimeNu[d]], {d, Divisors[n]}]-1;
    a /@ Range[72] (* Jean-François Alcover, Jan 18 2020 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    dedekindpsi(n)=jordantot(n,2)/eulerphi(n);
    A146564(n)=sumdiv(n, d, dedekindpsi(2^omega(d)));
    for(n=1, 200, print(n" "A146564(n))) \\ Enrique Pérez Herrero, Apr 14 2012
    

Formula

Conjecture: a(n) = A048691(n)+A063647(n). - R. J. Mathar, Nov 21 2008 (See Corollary 4 in Cerruti's paper.)
a(n) = Sum_{d|n} psi(2^omega(d)), where psi is A001615 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012

Extensions

Extended beyond a(11) by R. J. Mathar, Nov 21 2008

A162821 Positive numbers k such that 30*k/(30-k) are integers.

Original entry on oeis.org

5, 10, 12, 15, 18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 42, 45, 48, 50, 55, 60, 66, 75, 80, 90, 105, 120, 130, 180, 210, 255, 330, 480, 930
Offset: 1

Views

Author

Keywords

Comments

The number k=30 is explicitly included, treating the result of division through zero as an integer.
Row 30 of A191973.

Crossrefs

Programs

  • Maple
    for m from 1 to 930 do if(m=30 or m*30 mod (m-30) = 0)then printf("%d, ", m): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[a_,b_]:=(a*b)/(a-b); a=30;lst={};Do[If[f[a,n]==IntegerPart[f[a,n]], AppendTo[lst,n]],{n,9!}];lst

Extensions

Keywords fini,full added by R. J. Mathar, Jul 31 2009

A162822 Positive numbers k such that 36*k/(36-k) are integers.

Original entry on oeis.org

9, 12, 18, 20, 24, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 45, 48, 52, 54, 60, 63, 72, 84, 90, 108, 117, 144, 180, 198, 252, 360, 468, 684, 1332
Offset: 1

Views

Author

Keywords

Comments

The number k=36 is explicitly included, treating the result of division through zero as an integer.
Row 36 of A191973.

Crossrefs

Programs

  • Maple
    for m from 1 to 1332 do if(m=36 or m*36 mod (m-36) = 0)then printf("%d, ", m): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[a_,b_]:=(a*b)/(a-b); a=36;lst={};Do[If[f[a,n]==IntegerPart[f[a,n]], AppendTo[lst,n]],{n,9!}];lst
    Sort[Join[{36},Select[Range[1500],IntegerQ[(36#)/(36-#)]&]]]  (* Harvey P. Dale, Mar 23 2011 *)

Extensions

Keywords fini,full added by R. J. Mathar, Jul 31 2009

A162823 Positive numbers k such that 42*k/(42-k) are integers.

Original entry on oeis.org

6, 14, 21, 24, 28, 30, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 54, 56, 60, 63, 70, 78, 84, 91, 105, 126, 140, 168, 189, 238, 294, 336, 483, 630, 924, 1806
Offset: 1

Views

Author

Keywords

Comments

The number k=42 is explicitly included, treating the result of division through zero as an integer.
Row 42 of A191973.

Crossrefs

Programs

  • Maple
    for m from 1 to 1806 do if(m=42 or m*42 mod (m-42) = 0)then printf("%d, ", m): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[a_,b_]:=(a*b)/(a-b); a=42;lst={};Do[If[f[a,n]==IntegerPart[f[a,n]], AppendTo[lst,n]],{n,9!}];lst
    Join[{42},Select[Range[2000],IntegerQ[(42#)/(42-#)]&]]//Quiet//Sort (* Harvey P. Dale, Mar 14 2020 *)

Extensions

Keywords fini,full added by R. J. Mathar, Jul 31 2009

A162824 Positive numbers k such that 48*k/(48-k) are integers.

Original entry on oeis.org

12, 16, 24, 30, 32, 36, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 56, 57, 60, 64, 66, 72, 80, 84, 96, 112, 120, 144, 176, 192, 240, 304, 336, 432, 624, 816, 1200, 2352
Offset: 1

Views

Author

Keywords

Comments

The number k=48 is explicitly included.
Row 48 of A191973.

Crossrefs

Programs

  • Maple
    for m from 1 to 2352 do if(m=48 or m*48 mod (m-48) = 0)then printf("%d, ", m): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[a_,b_]:=(a*b)/(a-b); a=48;lst={};Do[If[f[a,n]==IntegerPart[f[a,n]], AppendTo[lst,n]],{n,9!}];lst

Extensions

Keywords fini,full added by R. J. Mathar, Jul 31 2009

A162825 Positive numbers k such that 60*k/(60-k) are integers.

Original entry on oeis.org

10, 12, 15, 20, 24, 30, 35, 36, 40, 42, 44, 45, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 78, 80, 84, 85, 90, 96, 100, 105, 108, 110, 120, 132, 135, 140, 150, 160, 180, 204, 210, 240, 260, 285, 300, 360, 420
Offset: 1

Views

Author

Keywords

Comments

The number k=60 is explicitly included. The last entry in the sequence is a(68) = 3660.
Row 60 of A191973.

Crossrefs

Programs

  • Maple
    for n from 1 to 3660 do if(n=60 or type(60*n/(60-n),integer))then printf("%d, ",n): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    f[a_,b_]:=(a*b)/(a-b); a=60;lst={};Do[If[f[a,n]==IntegerPart[f[a,n]], AppendTo[lst,n]],{n,9!}];lst
    Select[Range[500],If[#==60,True,IntegerQ[(60#)/(60-#)]]&] (* Harvey P. Dale, Sep 26 2023 *)

Extensions

Keyword fini added by R. J. Mathar, Jul 31 2009
Showing 1-7 of 7 results.