A192080 Expansion of 1/((1-x)^6 - x^6).
1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6).
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(),m); Coefficients(R!(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)))); -
Mathematica
CoefficientList[Series[1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), {x,0,50}], x] (* Vincenzo Librandi, Oct 15 2012 *) LinearRecurrence[{6,-15,20,-15,6},{1,6,21,56,126},30] (* Harvey P. Dale, Feb 22 2017 *)
-
Maxima
makelist(coeff(taylor(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, 0, n), x, n), n, 0, 29);
-
PARI
Vec(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2011
-
SageMath
def A192080_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x)^6-x^6) ).list() A192080_list(51) # G. C. Greubel, Apr 11 2023