cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192359 Numerator of h(n+6) - h(n), where h(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

49, 223, 341, 2509, 2131, 20417, 18107, 30233, 96163, 1959, 36177, 51939, 436511, 598433, 80507, 532541, 1388179, 1785181, 378013, 95003, 1181909, 4370849, 2671363, 3240049, 1560647, 9333997, 5547947, 2185691, 5138581, 1201967, 10493071, 12159157, 28060691, 32250013
Offset: 0

Views

Author

Gary Detlefs, Jun 28 2011

Keywords

Comments

Numerator of (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/((n+1)*(n+2)*...*(n+6)).
(2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,2,3,3]
p(n) is of period 9, repeating [2,2,2,1,1,1,1,1,1]
q1(n) is of period 5, repeating [0,0,0,0,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].

Crossrefs

Programs

  • GAP
    List(List([0..35],n->Sum([1..n+6],k->(1/k))-Sum([1..n],k->(1/k))),NumeratorRat); # Muniru A Asiru, Oct 21 2018
  • Magma
    [49] cat [Numerator(HarmonicNumber(n+6) - HarmonicNumber(n)): n in [1..40]]; // G. C. Greubel, Oct 20 2018
    
  • Maple
    h:= n-> sum(1/k,k=1..n):seq(numer(h(n+6)-h(n)), n=0..33);
    P:=(x,y,z,n)-> floor(((n+x)mod y)/z):
    a:=n->(2*n+7)*(3*n^4+42*n^3+203*n^2+392*n+252)/(2^(P(0,4,2,n)+2)*3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))):
    seq(a(n), n=0..25);
  • Mathematica
    Numerator[Table[HarmonicNumber[n+6]-HarmonicNumber[n],{n,0,40}]] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    h(n) = sum(k=1, n, 1/k);
    a(n) = numerator(h(n+6)-h(n)); \\ Michel Marcus, Apr 15 2017
    

Formula

a(n) = (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/(2^(P(0,4,2,n)+2) * 3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))), where P(x,y,z,n) = floor(((n+x)mod y)/z).