A192398 a(n) = n^4 + 3*n^3 - 3*n.
1, 34, 153, 436, 985, 1926, 3409, 5608, 8721, 12970, 18601, 25884, 35113, 46606, 60705, 77776, 98209, 122418, 150841, 183940, 222201, 266134, 316273, 373176, 437425, 509626, 590409, 680428, 780361, 890910, 1012801, 1146784, 1293633, 1454146, 1629145, 1819476
Offset: 1
Examples
a(5) = 5^4 + 3*5^3 - 3*5 = (625 + 375 - 15) = 985. a(4) = 436 = (1, 3, 3, 1) dot (1, 33, 86, 78) = (1 + 99 + 258 + 78) = 436. a(7) = 3409 = lower right term in M^4, M = {{1,6}{1,7}}. a(4) = 436 = (3 + a) * (3 + b) * (3 + c) * (3 + d), = (5.347296...) * (3.120614...) * (4) * (6.532088...) = 436.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^4 +3*n^3 -3*n: n in [1..45]]; // Vincenzo Librandi, Nov 25 2011
-
Maple
A192398:=n->n^4+3*n^3-3*n: seq(A192398(n), n=1..40); # Wesley Ivan Hurt, Sep 12 2014
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1},{1,34,153,436,985},50] (* Vincenzo Librandi, Nov 25 2011 *) Table[n^4+3n^3-3n,{n,40}] (* Harvey P. Dale, Feb 21 2023 *)
-
PARI
a(n) = n^4 +3*n^3 -3*n \\ Charles R Greathouse IV, Jun 30 2011
-
SageMath
[n*(n^3+3*n^2-3) for n in range(1,51)] # G. C. Greubel, Jul 11 2023
Formula
G.f.: (1 +29*x -7*x^2 +x^3) / (1-x)^5. - R. J. Mathar, Jul 08 2011
a(n) = binomial transform of [1, 33, 86, 78, 24, 0, 0, 0,...].
a(n) = lower right term in the 2 X 2 matrix M^4, M = {{1,n-1}, {1,n}}.
a(n) = ((n-1) + a) * ((n-1) + b) * ((n-1) + c) * ((n-1) + d), where a, b, c, d, = {k=1,2,3,4} 4*cos^2 (2*Pi*k)/9.
E.g.f.: x*(1 + 16*x + 9*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 11 2023
Comments