cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, -1, -1, 1, -2, 1, 1, 1, -3, 5, -1, 0, 1, -4, 11, -13, 1, -1, 1, -5, 19, -41, 34, -1, 1, 1, -6, 29, -91, 153, -89, 1, 0, 1, -7, 41, -169, 436, -571, 233, -1, -1, 1, -8, 55, -281, 985, -2089, 2131, -610, 1, 1, 1, -9, 71, -433, 1926, -5741, 10009, -7953, 1597, -1, 0
Offset: 1

Views

Author

Keywords

Comments

This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
For detailed theory, see [Hone].
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
1   0  -1     1     0      -1       1         0        -1           1
1  -1   1    -1     1      -1       1        -1         1          -1
1  -2   5   -13    34     -89     233      -610      1597       -4181
1  -3  11   -41   153    -571    2131     -7953     29681     -110771
1  -4  19   -91   436   -2089   10009    -47956    229771    -1100899
1  -5  29  -169   985   -5741   33461   -195025   1136689    -6625109
1  -6  41  -281  1926  -13201   90481   -620166   4250681   -29134601
1  -7  55  -433  3409  -26839  211303  -1663585  13097377  -103115431
1  -8  71  -631  5608  -49841  442961  -3936808  34988311  -310957991
1  -9  89  -881  8721  -86329  854569  -8459361  83739041  -828931049
		

Crossrefs

Cf. A094954 (unsigned version of this array, but missing the first row).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
    (*Array antidiagonals flattened (gives this sequence):*)
    A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A294099. - Michael Somos, Jun 19 2023

A348482 Triangle read by rows: T(n,k) = (Sum_{i=k..n} i!)/(k!) for 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 10, 9, 4, 1, 34, 33, 16, 5, 1, 154, 153, 76, 25, 6, 1, 874, 873, 436, 145, 36, 7, 1, 5914, 5913, 2956, 985, 246, 49, 8, 1, 46234, 46233, 23116, 7705, 1926, 385, 64, 9, 1, 409114, 409113, 204556, 68185, 17046, 3409, 568, 81, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 20 2021

Keywords

Comments

The matrix inverse M = T^(-1) has terms M(n,n) = 1 for n >= 0, M(n,n-1) = -(n+1) for n > 0, and M(n,n-2) = n for n > 1, otherwise 0.

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :       0       1       2      3      4     5    6   7   8  9
=================================================================
  0 :       1
  1 :       2       1
  2 :       4       3       1
  3 :      10       9       4      1
  4 :      34      33      16      5      1
  5 :     154     153      76     25      6     1
  6 :     874     873     436    145     36     7    1
  7 :    5914    5913    2956    985    246    49    8   1
  8 :   46234   46233   23116   7705   1926   385   64   9   1
  9 :  409114  409113  204556  68185  17046  3409  568  81  10  1
  etc.
		

Crossrefs

Cf. A109398, A094587, A002104 (row sums), A173184 (alt. row sums), A000012 (main diagonal), A000027(1st subdiagonal), A000290 (2nd subdiagonal), A081437 (3rd subdiagonal), A192398 (4th subdiagonal), A003422 (column 0), A007489 (column 1), A345889 (column 2), A143122.

Programs

  • Mathematica
    T[n_, k_] := Sum[i!, {i, k, n}]/k!; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Oct 20 2021 *)

Formula

T(n,n) = 1 and T(2*n,n) = A109398(n) for n >= 0; T(n,n-1) = n+1 for n > 0; T(n,n-2) = n^2 for n > 1.
T(n,k) - T(n-1,k) = (n!) / (k!) = A094587(n,k) for 0 <= k < n.
T(n,k) = (k+2) * (T(n,k+1) - T(n,k+2)) for 0 <= k < n-1.
T(n,k) = (T(n,k-1) - 1) / k for 0 < k <= n.
T(n,k) * T(n-1,k-1) - T(n-1,k) * T(n,k-1) = (n!) / (k!) for 0 < k < n.
T(n,1) = T(n,0)-1 = Sum_{k=0..n-1} T(n,k)/(k+2) for n > 0 (conjectured).
Sum_{k=0..n} binomial(k+r,k) * (1-k) * T(n+r,k+r) = binomial(n+r+1,n) for n >= 0 and r >= 0.
Sum_{k=0..n} (-1)^k * (k+1) * T(n,k) = (1 + (-1)^n) / 2 for n >= 0.
Sum_{k=0..n} (-1)^k * (k!) * T(n,k) = Sum_{k=0..n} (k!) * (1+(-1)^k) / 2 for n >= 0.
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k for n >= 0 satisfy the following equations:
(a) p(n,x) - p'(n,x) = (x^(n+1)-1) / (x-1) for n >= 0, where p' is the first derivative of p;
(b) p(n,x) - (n+1) * p(n-1,x) + n * p(n-2,x) = x^n for n > 1.
(c) p(n,x) = (x+1) * p(n-1,x) + 1 + Sum_{i=1..n-1} (d/dx)^i p(n-1,x) for n > 0 (conjectured).
Row sums p(n,1) equal A002104(n+1) for n >= 0.
Alternating row sums p(n,-1) equal A173184(n) for n >= 0 (conjectured).
The three conjectures stated above are true. See links. - Sela Fried, Jul 11 2024.
From Peter Luschny, Jul 11 2024: (Start)
T(n, k) = (t(k) - t(n + 1)) / k!, where t(n) = (-1)^(n + 1) * Gamma(n + 1) * Subfactorial(-(n + 1)).
T(n, k) = A143122(n, k) / k!. (End)
Showing 1-2 of 2 results.