A192722 T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
1, 1, 4, 1, 18, 36, 1, 68, 432, 576, 1, 250, 3900, 14400, 14400, 1, 922, 32400, 252000, 648000, 518400, 1, 3430, 262542, 3880800, 19404000, 38102400, 25401600, 1, 12868, 2119152, 56664384, 493920000, 1795046400, 2844979200, 1625702400
Offset: 1
Examples
The triangle begins n/k|..1.....2.......3........4........5........6 ================================================ .1.|..1 .2.|..1.....4 .3.|..1....18.....36 .4.|..1....68.....432......576 .5.|..1...250....3900....14400....14400 .6.|..1...922...32400...252000...648000...518400 ... T(4,2) = 68: There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2 = 36 + 16 + 16 = 68. Matrix identity: A192721 * Pascal's triangle = row reverse of A192722: /...1................\ /..1..............\ |...3.....1...........||..1....1..........| |..19....16.....5.....||..1....2....1.....| |.211...299....65....1||..1....3....3....1| |.....................||..................| = /...1...................\ |...4......1.............| |..36.....18......1......| |.576....432.....68.....1| |........................|
Links
- Alois P. Heinz, Rows n = 1..100, flattened
Crossrefs
Programs
-
Maple
J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z): G := 1/(1-x*(J(z)-1)): Gser := simplify(series(G, z = 0, 15)): for n from 1 to 14 do P[n] := n!^2*sort(coeff(Gser, z, n)) od: for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od; # yields sequence in triangular form # second Maple program: b:= proc(n) option remember; expand( `if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2): seq(T(n), n=1..14); # Alois P. Heinz, Sep 10 2019
-
Mathematica
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
Formula
Generating function: Let J(z) = Sum_{n>=0} z^n/n!^2. Then
1 + Sum_{n>=1} (Sum_{k = 1..n} T(n,k)*x^k)*z^n/n!^2 = 1/(1 - x*(J(z) - 1))
= 1 + x*z + (x + 4*x^2)*z^2/2!^2 + (x + 18*x^2 + 36*x^3)*z^3/3!^2 + ....
Relations with other sequences:
The change of variable z -> z/x followed by x -> 1/(x - 1) transforms the above bivariate generating function 1/(1 - x*(J(z) - 1)) into (1 - x)/(-x + J(z*(x-1))), which is the generating function for A192721.
1/k!*T(n,k) = A061691(n,k).
T(n,n) = n!^2 = A001044(n).
Row sums = A102221.
For n>=1, Sum_{k = 1..n} (-1)^(n+k)*T(n,k)/k = A002190(n).
Comments