A193248 Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.
1, 93, 455, 1267, 2709, 4961, 8203, 12615, 18377, 25669, 34671, 45563, 58525, 73737, 91379, 111631, 134673, 160685, 189847, 222339, 258341, 298033, 341595, 389207, 441049, 497301, 558143, 623755, 694317, 770009, 851011, 937503, 1029665, 1127677, 1231719
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Wikipedia, Tetrahedral number
- Wikipedia, Triangular number
- Wikipedia, Centered polygonal number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[30*n^3-45*n^2+17*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
-
Mathematica
Table[30n^3-45n^2+17n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,93,455,1267},40] (* Harvey P. Dale, Aug 28 2011 *)
-
PARI
vector(40, n, 30*n^3 - 45*n^2 + 17*n - 1) \\ G. C. Greubel, Nov 10 2018
Formula
a(n) = 30*n^3 - 45*n^2 + 17*n - 1.
G.f.: x*(1+x)*(x^2 + 88*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=93, a(3)=455, a(4)=1267. - Harvey P. Dale, Aug 28 2011
E.g.f.: 1 - (1 - 2*x - 45*x^2 - 30*x^3)*exp(x). - G. C. Greubel, Nov 10 2018
Comments