cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193252 Great rhombicuboctahedron with faces of centered polygons.

Original entry on oeis.org

1, 75, 365, 1015, 2169, 3971, 6565, 10095, 14705, 20539, 27741, 36455, 46825, 58995, 73109, 89311, 107745, 128555, 151885, 177879, 206681, 238435, 273285, 311375, 352849, 397851, 446525, 499015, 555465, 616019, 680821, 750015, 823745, 902155, 985389, 1073591
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of (n-2) edge units and (n-1) vertices to complete the centered polygon of each face: centered squares, centered octagons and centered hexagons.

Crossrefs

First differences in 2*A158591.
Cf. A001844 (centered square numbers), A016754 (centered octagonal numbers), A003215 (centered hexagonal numbers).

Programs

  • Excel
    =24*ROW()^3-36*ROW()^2+14*ROW()-1
    
  • GAP
    List([1..40], n-> 24*n^3 -36*n^2 +14*n -1); # G. C. Greubel, Feb 26 2019
  • Magma
    A069190:=func; [(2*n-1)*A069190(n): n in [1..40]];  // Bruno Berselli, Jul 21 2011
    
  • Mathematica
    Table[24n^3-36n^2+14n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,75,365,1015},40] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    for(n=1,40, print1(24*n^3-36*n^2+14*n-1", "));  \\ Bruno Berselli, Jul 21 2011
    
  • Sage
    [24*n^3 -36*n^2 +14*n -1 for n in (1..40)] # G. C. Greubel, Feb 26 2019
    

Formula

a(n) = 24*n^3 - 36*n^2 + 14*n - 1.
G.f.: x*(1+x)*(1+70*x+x^2)/(1-x)^4; a(n) = (2*n-1)*A069190(n). - Bruno Berselli, Jul 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=75, a(2)=365, a(3)=1015. - Harvey P. Dale, Jul 27 2011
a(n) = 72 * A000330(n-1) + A005408(n-1). - Bruce J. Nicholson, Feb 23 2019
E.g.f.: 1 + (-1 + 2*x + 36*x^2 + 24*x^3)*exp(x). - G. C. Greubel, Feb 26 2019