A193252 Great rhombicuboctahedron with faces of centered polygons.
1, 75, 365, 1015, 2169, 3971, 6565, 10095, 14705, 20539, 27741, 36455, 46825, 58995, 73109, 89311, 107745, 128555, 151885, 177879, 206681, 238435, 273285, 311375, 352849, 397851, 446525, 499015, 555465, 616019, 680821, 750015, 823745, 902155, 985389, 1073591
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- OEIS Wiki, (Centered polygons) pyramidal numbers
- Wikipedia, Tetrahedral number
- Wikipedia, Triangular number
- Wikipedia, Centered polygonal number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Excel
=24*ROW()^3-36*ROW()^2+14*ROW()-1
-
GAP
List([1..40], n-> 24*n^3 -36*n^2 +14*n -1); # G. C. Greubel, Feb 26 2019
-
Magma
A069190:=func
; [(2*n-1)*A069190(n): n in [1..40]]; // Bruno Berselli, Jul 21 2011 -
Mathematica
Table[24n^3-36n^2+14n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,75,365,1015},40] (* Harvey P. Dale, Jul 27 2011 *)
-
PARI
for(n=1,40, print1(24*n^3-36*n^2+14*n-1", ")); \\ Bruno Berselli, Jul 21 2011
-
Sage
[24*n^3 -36*n^2 +14*n -1 for n in (1..40)] # G. C. Greubel, Feb 26 2019
Formula
a(n) = 24*n^3 - 36*n^2 + 14*n - 1.
G.f.: x*(1+x)*(1+70*x+x^2)/(1-x)^4; a(n) = (2*n-1)*A069190(n). - Bruno Berselli, Jul 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=75, a(2)=365, a(3)=1015. - Harvey P. Dale, Jul 27 2011
E.g.f.: 1 + (-1 + 2*x + 36*x^2 + 24*x^3)*exp(x). - G. C. Greubel, Feb 26 2019
Comments