cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193433 Sum of the divisors of n^2+1.

Original entry on oeis.org

1, 3, 6, 18, 18, 42, 38, 93, 84, 126, 102, 186, 180, 324, 198, 342, 258, 540, 434, 546, 402, 756, 588, 972, 578, 942, 678, 1332, 948, 1266, 972, 1596, 1302, 1980, 1260, 1842, 1298, 2484, 1842, 2286, 1602, 2613, 2124, 3534, 2100, 3042, 2220, 4536, 2772, 3606
Offset: 0

Views

Author

Michel Lagneau, Jul 28 2011

Keywords

Examples

			a(7) = 93 because 7^2+1 = 50 and the sum of the 6 divisors { 1, 2, 5, 10, 25, 50} is 93.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 0 to 110 do:x:=divisors(n^2+1):n1:=nops(x):s:=0:for m from 1 to n1 do: s:=s+x[m]:od: printf(`%d, `, s):od:
  • Mathematica
    Table[Total[Divisors[n^2 + 1]], {n, 0, 100}] (* T. D. Noe, Jul 28 2011 *)
    DivisorSigma[1,Range[0,50]^2+1] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    a(n) = sigma(n^2+1); \\ Michel Marcus, Mar 17 2018
    
  • Python
    from sympy import divisor_sigma
    def A193433(n): return divisor_sigma(n**2+1) # Chai Wah Wu, Apr 17 2025

Formula

a(n) = A000203(A002522(n)). - Michel Marcus, Mar 16 2018