cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A193432 Number of divisors of n^2 + 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 4, 4, 8, 2, 4, 2, 8, 6, 4, 2, 8, 4, 8, 2, 4, 2, 8, 4, 4, 4, 8, 6, 8, 4, 4, 2, 8, 6, 4, 2, 6, 4, 12, 4, 4, 4, 16, 4, 4, 4, 4, 4, 8, 2, 8, 2, 16, 4, 4, 4, 4, 4, 8, 4, 4, 2, 8, 8, 4, 6, 4, 8, 16, 2, 8, 4, 8, 4, 4, 4, 8, 6, 16, 2
Offset: 0

Views

Author

Michel Lagneau, Jul 28 2011

Keywords

Examples

			a(7) = 6 because 7^2 + 1 = 50 and the 6 divisors are {1, 2, 5, 10, 25, 50}.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 0 to 110 do:n1:=nops(divisors(n^2+1)):s:=0:for m from 1 to n1 do: s:=s+1:od: printf(`%d, `, s):od:
  • Mathematica
    Array[DivisorSigma[0, #^2 + 1] &, 85, 0] (* Michael De Vlieger, Mar 17 2018 *)
  • PARI
    a(n) = numdiv(n^2+1); \\ Michel Marcus, Mar 16 2018
    
  • Python
    from sympy import divisor_count
    def A193432(n): return divisor_count(n**2+1) # Chai Wah Wu, Apr 17 2025

Formula

a(n) = A000005(A002522(n)). - Michel Marcus, Mar 16 2018

A193462 Sum of the distinct prime divisors of n^2+1.

Original entry on oeis.org

0, 2, 5, 7, 17, 15, 37, 7, 18, 43, 101, 63, 34, 24, 197, 115, 257, 36, 18, 183, 401, 32, 102, 60, 577, 315, 677, 80, 162, 423, 70, 52, 46, 116, 102, 615, 1297, 144, 22, 763, 1601, 31, 358, 44, 162, 1015, 102, 37, 466, 1203, 102, 1303, 546, 288, 2917, 108, 3137
Offset: 0

Views

Author

Michel Lagneau, Jul 28 2011

Keywords

Examples

			a(7) = 7 because 7^2+1 = 2*5^2 and the sum of the 2 distinct prime divisors {2, 5} is 7.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 0 to 110 do:x:=factorset(n^2+1):n1:=nops(x):s:=0:for m from 1 to n1 do: s:=s+x[m]:od: printf(`%d, `, s):od:
  • Mathematica
    Join[{0},Table[Total[Transpose[FactorInteger[n^2+1]][[1]]],{n,60}]] (* Harvey P. Dale, Oct 18 2013 *)

A333169 a(n) = phi(n^2 + 1), where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 4, 4, 16, 12, 36, 20, 48, 40, 100, 60, 112, 64, 196, 112, 256, 112, 240, 180, 400, 192, 384, 208, 576, 312, 676, 288, 624, 420, 832, 432, 800, 432, 1056, 612, 1296, 544, 1088, 760, 1600, 812, 1408, 720, 1776, 1012, 2016, 768, 1840, 1200, 2400, 1300, 2160
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = phi(0^2 + 1) = phi(1) = 1.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[k^2 + 1], {k, 0, 100}]
  • PARI
    a(n) = eulerphi(n^2+1); \\ Michel Marcus, Mar 10 2020

Formula

a(n) = A000010(A002522(n)).

A333167 a(n) = r_2(n^2 + 1), where r_2(k) is the number of ways of writing k as a sum of 2 squares (A004018).

Original entry on oeis.org

4, 4, 8, 8, 8, 8, 8, 12, 16, 8, 8, 8, 16, 16, 8, 8, 8, 16, 24, 8, 8, 16, 16, 16, 8, 8, 8, 16, 16, 8, 16, 16, 24, 16, 16, 8, 8, 16, 24, 8, 8, 12, 16, 24, 16, 8, 16, 32, 16, 8, 16, 8, 16, 16, 8, 16, 8, 32, 16, 8, 16, 8, 16, 16, 16, 8, 8, 16, 32, 8, 24, 8, 32, 32
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_2(0^2 + 1) = r_2(1) = A004018(1) = 4.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[2, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A004018(A002522(n)).

A067719 Numbers k such that sigma(k^2 + 1) == 0 (mod k).

Original entry on oeis.org

1, 2, 3, 9, 12, 21, 33, 72, 93, 196, 228, 252, 360, 475, 850, 1458, 1725, 1752, 2100, 2241, 2584, 3007, 3404, 4347, 4743, 5544, 5720, 6555, 6600, 9909, 10512, 14175, 15507, 16680, 19404, 26460, 29008, 29484, 36003, 36400, 37107, 46728, 88209, 88641, 89424, 94770
Offset: 1

Views

Author

Benoit Cloitre, Feb 05 2002

Keywords

Crossrefs

Programs

  • Maple
    q:= n-> is(irem(numtheory[sigma](n^2+1), n)=0):
    select(q, [$1..100000])[];  # Alois P. Heinz, Jan 26 2023
  • Mathematica
    Select[Range[50000],Divisible[DivisorSigma[1,#^2+1],#]&] (* Harvey P. Dale, Nov 04 2011 *)

A333173 a(n) = r_4(n^2 + 1), where r_4(k) is the number of ways of writing k as a sum of 4 squares (A000118).

Original entry on oeis.org

8, 24, 48, 144, 144, 336, 304, 744, 672, 1008, 816, 1488, 1440, 2592, 1584, 2736, 2064, 4320, 3472, 4368, 3216, 6048, 4704, 7776, 4624, 7536, 5424, 10656, 7584, 10128, 7776, 12768, 10416, 15840, 10080, 14736, 10384, 19872, 14736, 18288, 12816, 20904, 16992, 28272
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_4(0^2 + 1) = r_4(1) = A000118(1) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[4, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A000118(A002522(n)).

A067465 Numbers k such that sigma(k^2+1) is a perfect square.

Original entry on oeis.org

0, 13, 64, 67, 189, 344, 900, 2499, 3028, 4253, 5257, 6277, 9075, 11516, 12544, 18739, 18925, 47018, 49011, 62355, 72981, 112061, 125011, 125653, 152765, 167820, 168317, 174724, 179040, 225492, 240597, 251568, 261163, 302128, 302812, 345283
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,400000],IntegerQ[Sqrt[DivisorSigma[1,#^2+1]]]&] (* Harvey P. Dale, May 14 2018 *)
  • PARI
    for(n=0,500000,if(issquare(sigma(n^2+1)),print1(n,",")))

Extensions

More terms from Rick L. Shepherd, Apr 16 2002

A234645 Sum of the divisors of n^3+1.

Original entry on oeis.org

1, 3, 13, 56, 84, 312, 256, 660, 800, 1332, 1344, 3458, 2240, 3792, 4836, 6572, 4356, 13440, 6160, 16800, 13312, 15192, 11136, 35685, 19840, 25284, 30976, 42560, 22740, 63648, 30464, 71820, 51792, 65664, 53952, 111440, 52136, 84480, 99008, 133560, 75264
Offset: 0

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Examples

			a(4) = 84 because 4^3+1 = 65 and the sum of the 4 divisors {1, 5, 13, 65} is 84.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3+1): n in [0..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 + 1]], {n, 0, 50}]
    DivisorSigma[1,Range[0,40]^3+1] (* Harvey P. Dale, Jul 27 2021 *)
  • PARI
    a(n) = sigma(n^3+1); \\ Michel Marcus, Jun 19 2015

Formula

a(n) = A000203(A001093(n)). - Michel Marcus, Jun 19 2015
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.449926279... . - Amiram Eldar, Dec 09 2024

A234860 Sum of the divisors of n^3 - 1.

Original entry on oeis.org

8, 42, 104, 224, 264, 780, 592, 1680, 1520, 2880, 1896, 5642, 2968, 5808, 8736, 9548, 7200, 15360, 8440, 19488, 19032, 23040, 14448, 49920, 23560, 31836, 32912, 53312, 34200, 77688, 38912, 70812, 62088, 74088, 67584, 152320, 56392, 107520, 99736
Offset: 2

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3-1): n in [2..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 - 1]], {n, 2, 50}]
  • PARI
    a(n) = sigma(n^3-1); \\ Amiram Eldar, Dec 09 2024

Formula

From Amiram Eldar, Dec 09 2024: (Start)
a(n) = A000203(A068601(n)).
Sum_{k=2..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.4499262799... . (End)

Extensions

Offset corrected by Amiram Eldar, Dec 09 2024

A333172 a(n) = Sum_{k=0..n} sigma(k^2 + 1), where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 4, 10, 28, 46, 88, 126, 219, 303, 429, 531, 717, 897, 1221, 1419, 1761, 2019, 2559, 2993, 3539, 3941, 4697, 5285, 6257, 6835, 7777, 8455, 9787, 10735, 12001, 12973, 14569, 15871, 17851, 19111, 20953, 22251, 24735, 26577, 28863, 30465, 33078, 35202, 38736
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = sigma(0^2 + 1) = sigma(1) = 1.
a(1) = sigma(0^2 + 1) + sigma(1^2 + 1) = sigma(1) + sigma(2) = 1 + 3 = 4.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Partial sums of A193433.

Programs

  • Mathematica
    Accumulate @ Table[DivisorSigma[1, k^2 + 1], {k, 0, 100}]
  • PARI
    a(n) = sum(k=0, n, sigma(k^2+1)); \\ Michel Marcus, Mar 10 2020

Formula

a(n) ~ (5*G/Pi^2) * n^3, where G is Catalan's constant (A006752).
Showing 1-10 of 10 results.