cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A193472 Numerator of ez(n-1)*n!/(4^n-2^n) where ez(n) is the n-th coefficient of sec(t)+tan(t) for n>0, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 25, 1, 427, 1, 12465, 5, 555731, 691, 35135945, 7, 2990414715, 3617, 329655706465, 43867, 45692713833379, 174611, 1111113564712575, 854513, 1595024111042171723, 236364091, 387863354088927172625, 8553103, 110350957750914345093747, 23749461029
Offset: 0

Views

Author

Peter Luschny, Aug 07 2011

Keywords

Crossrefs

Programs

  • Maple
    gf := (f,n) -> coeff(series(f(x),x,n+1),x,n):
    BG := n ->`if`(n=0,1,gf(sec+tan,n-1)*n!/(4^n-2^n)):
    A193472 := n -> numer(BG(n)): seq(A193472(n),n=0..28);
  • Mathematica
    ez[n_] := SeriesCoefficient[Sec[t] + Tan[t], {t, 0, n}];
    a[0] = 1; a[n_] := Numerator[ez[n-1] n!/(4^n - 2^n)];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 24 2019 *)

A193473 Denominator of ez(n-1)*n!/(4^n-2^n) where ez(n) is the n-th coefficient of sec(t)+tan(t) for n>0, a(0) = 1.

Original entry on oeis.org

1, 2, 6, 56, 30, 992, 42, 16256, 30, 261632, 66, 4192256, 2730, 67100672, 6, 1073709056, 510, 17179738112, 798, 274877382656, 330, 628292059136, 138, 70368735789056, 2730, 1125899873288192, 6, 18014398375264256, 870
Offset: 0

Views

Author

Peter Luschny, Aug 07 2011

Keywords

Crossrefs

Programs

  • Maple
    gf := (f,n) -> coeff(series(f(x),x,n+1),x,n):
    BG := n ->`if`(n=0,1,gf(sec+tan,n-1)*n!/(4^n-2^n)):
    A193473 := n -> denom(BG(n)): seq(A193473(n),n=0..28);
  • Mathematica
    ez[n_] := SeriesCoefficient[Sec[t] + Tan[t], {t, 0, n}];
    a[0] = 1; a[n_] := Denominator[ez[n - 1] n!/(4^n - 2^n)];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 26 2019 *)

A360945 a(n) = numerator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.

Original entry on oeis.org

1, 2, 10, 244, 554, 202084, 2162212, 1594887848, 7756604858, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 105453443486621462355224, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 0

Views

Author

Artur Jasinski, Feb 26 2023

Keywords

Comments

The function (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) is rational for every positive integer n.
For denominators see A360966.
(Zeta(2*n+1,1/4) + Zeta(2*n+1,3/4))/Zeta(2*n+1) = 4*16^n - 2*4^n; see A193475.
For numerators of the function (Zeta(2*n,1/4) + Zeta(2*n,3/4))/Pi^(2*n) see A361007.
For denominators of the function (Zeta(2*n,1/4) + Zeta(2*n,3/4))/Pi^(2*n) see A036279.
(Zeta(2*n,1/4) - Zeta(2*n,3/4))/beta(2*n) = 16^n (see A001025) where beta is the Dirichlet beta function.
From the above formulas we can express Zeta(k,1/4) and Zeta(k,3/4) for every positive integer k.

Examples

			a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 244 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
		

Crossrefs

Programs

  • Mathematica
    Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 1, 25}] // FunctionExpand // Numerator (* Vaclav Kotesovec, Feb 27 2023 *)
    t[0, 1] = 1; t[0, _] = 0;
    t[n_, k_] := t[n, k] = (k-1) t[n-1, k-1] + (k+1) t[n-1, k+1];
    a[n_] := Sum[t[2n, k]/(2n)!, {k, 0, 2n+1}] // Numerator;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 15 2023 *)
    a[n_] := SeriesCoefficient[Tan[x+Pi/4], {x, 0, 2n}] // Numerator;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 15 2023 *)
  • PARI
    a(n) = numerator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023

Formula

a(n) = A046982(2*n).
(Zeta(2*n + 1, 1/4) - Zeta(2*n + 1, 3/4))/(Pi^(2*n + 1)) = A000364(n)*(2*n + 1)*2^(2*n)/(2*n + 1)!.

A193476 The denominators of the Bernoulli secant numbers at odd indices.

Original entry on oeis.org

2, 56, 992, 16256, 261632, 4192256, 67100672, 1073709056, 17179738112, 274877382656, 628292059136, 70368735789056, 1125899873288192, 18014398375264256, 288230375614840832, 4611686016279904256, 73786976286248271872, 1180591620683051565056
Offset: 0

Views

Author

Peter Luschny, Aug 17 2011

Keywords

Comments

Denominator of the coefficient [x^(2n)] of sec(x)*(2*n+1)!/(4*16^n-2*4^n), that is, a(n) is the denominator of A000364(n)*(2*n+1)/(4*16^n-2*4^n). [Edited by Altug Alkan, Apr 22 2018]
Numerators are A160143. [Corrected by Peter Luschny, Mar 18 2021]
A193475(n) = 4*16^n-2*4^n is similar, but differs at n = 10, 31, 52, 73, 77, 94, ...

Crossrefs

Programs

  • Maple
    gf := (f,n) -> coeff(series(f(x),x,n+4),x,n):
    A193476 := n -> denom(gf(sec,2*n)*(2*n+1)!/(4*16^n - 2*4^n)):
    seq(A193476(n), n = 0..17); # Altug Alkan, Apr 23 2018
  • Mathematica
    a[n_] := Sum[Sum[Binomial[k, m] (-1)^(n+k)/(2^(m-1)) Sum[Binomial[m, j]*(2j - m)^(2n), {j, 0, m/2}]*(-1)^(k-m), {m, 0, k}], {k, 1, 2n}] (2n+1)/ (4*16^n - 2*4^n) // Denominator; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 26 2019, after Vladimir Kruchinin in A000364 *)
  • PARI
    a(n) = denominator(subst(bernpol(2*n+1), 'x, 1/4)*2^(2*n+1)/(2^(2*n+1)-1)); \\ Altug Alkan, Apr 22 2018 after Charles R Greathouse IV at A000364

A342319 a(n) = denominator(((i^n * PolyLog(1 - n, -i) + (-i)^n * PolyLog(1 - n, i))) / (4^n - 2^n)) if n > 0 and a(0) = 1. Here i denotes the imaginary unit.

Original entry on oeis.org

1, 2, 12, 56, 120, 992, 252, 16256, 240, 261632, 132, 4192256, 32760, 67100672, 12, 1073709056, 8160, 17179738112, 14364, 274877382656, 6600, 4398044413952, 276, 70368735789056, 65520, 1125899873288192, 12, 18014398375264256, 3480, 288230375614840832
Offset: 0

Views

Author

Peter Luschny, Mar 22 2021

Keywords

Comments

For comments and references see A342318.

Examples

			r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
		

Crossrefs

Cf. A342318 (numerator), A006953, A193475.

Programs

  • Maple
    a := n -> `if`(n = 0, 1, `if`(n::even, denom(abs(bernoulli(n))/n), 4^n - 2^n)):
    seq(a(n), n=0..29);
  • Mathematica
    r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Denominator

Formula

a(2*n) = A006953(n).
a(2*n+1) = A193475(n).
Showing 1-5 of 5 results.