cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193641 Number of arrays of -1..1 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero.

Original entry on oeis.org

1, 3, 7, 15, 33, 73, 161, 355, 783, 1727, 3809, 8401, 18529, 40867, 90135, 198799, 438465, 967065, 2132929, 4704323, 10375711, 22884351, 50473025, 111321761, 245527873, 541528771, 1194379303, 2634286479, 5810101729, 12814582761
Offset: 1

Views

Author

R. H. Hardin, Aug 02 2011

Keywords

Comments

Column 1 of A193648.
Or yet empirical: row sums of triangle
m/k | 0 1 2 3 4 5 6 7
==================================================
0 | 1
1 | 1 2
2 | 1 2 4
3 | 1 2 4 8
4 | 1 4 4 8 16
5 | 1 4 12 8 16 32
6 | 1 4 12 32 16 32 64
7 | 1 6 12 32 80 32 64 128
which is triangle for numbers 2^k*C(m,k) with triplicated diagonals. - Vladimir Shevelev, Apr 13 2012

Examples

			Some solutions for n=6:
   1   1   1   0   0   1  -1   1   0  -1  -1   0   0   0  -1  -1
  -1  -1  -1   0  -1  -1   1  -1   1   1   1   1   1   0   1   1
  -1   0   1   0   1   1   0   0  -1  -1   0  -1  -1   1  -1   1
   1   1   1   0   1   0  -1  -1   1   1   0   0  -1  -1  -1  -1
   0  -1  -1  -1  -1   0   1   1  -1   0   0   0   1   1   1   1
   0   1   1   1   1   0  -1   0   0   0   0   0   0  -1  -1  -1
		

Programs

  • Haskell
    a193641 n = a193641_list !! n
    a193641_list = drop 2 xs where
       xs = 1 : 1 : 1 : zipWith (+) xs (map (* 2) $ drop 2 xs)
    -- Reinhard Zumkeller, Jan 01 2014

Formula

Empirical: a(n) = 2*a(n-1) + a(n-3).
Empirical: G.f.: -x*(1+x+x^2) / ( -1+2*x+x^3 ); a(n) = A008998(n-3) + A008998(n-2) + A008998(n-1). - R. J. Mathar, Feb 19 2015
Empirical: a(n) = 1 + 2*A077852(n-2) for n >= 2. - Greg Dresden, Apr 04 2021
Empirical: partial sums of A052910. - Sean A. Irvine, Jul 14 2022