A193641 Number of arrays of -1..1 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero.
1, 3, 7, 15, 33, 73, 161, 355, 783, 1727, 3809, 8401, 18529, 40867, 90135, 198799, 438465, 967065, 2132929, 4704323, 10375711, 22884351, 50473025, 111321761, 245527873, 541528771, 1194379303, 2634286479, 5810101729, 12814582761
Offset: 1
Keywords
Examples
Some solutions for n=6: 1 1 1 0 0 1 -1 1 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 1 -1 1 1 1 1 1 0 1 1 -1 0 1 0 1 1 0 0 -1 -1 0 -1 -1 1 -1 1 1 1 1 0 1 0 -1 -1 1 1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 0 1 1 -1 0 0 0 1 1 1 1 0 1 1 1 1 0 -1 0 0 0 0 0 0 -1 -1 -1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
- Jean-Luc Baril and Nathanaƫl Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- Tomislav Doslic and Ivana Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea 11 (2016) 255-276.
Programs
-
Haskell
a193641 n = a193641_list !! n a193641_list = drop 2 xs where xs = 1 : 1 : 1 : zipWith (+) xs (map (* 2) $ drop 2 xs) -- Reinhard Zumkeller, Jan 01 2014
Formula
Empirical: a(n) = 2*a(n-1) + a(n-3).
Empirical: G.f.: -x*(1+x+x^2) / ( -1+2*x+x^3 ); a(n) = A008998(n-3) + A008998(n-2) + A008998(n-1). - R. J. Mathar, Feb 19 2015
Empirical: a(n) = 1 + 2*A077852(n-2) for n >= 2. - Greg Dresden, Apr 04 2021
Empirical: partial sums of A052910. - Sean A. Irvine, Jul 14 2022
Comments