A193855 Primes p such that tau(p) is congruent to 1 (mod p), where tau is the Ramanujan tau function.
11, 23, 691
Offset: 1
References
- M. J. Hopkins, Algebraic topology and modular forms, Proc. Internat. Congress Math., Beijing 2002, Vol. I, pp. 291-317.
- M. J. Hopkins, Algebraic topology and modular forms, ICM 2002, Vol. I, pp. 283-309.
Links
- M. J. Hopkins, Algebraic topology and modular forms, arXiv:math/0212397 [math.AT], 2002.
- B. Mazur and A. Wiles, On p-adic analytic families of Galois representations, Compositio Mathematica, tome 59, n. 2 (1986), p. 231-264.
Programs
-
Mathematica
Select[Prime[Range[1, 1000]], 1 == Mod[RamanujanTau[#], #] &] (* Robert Price, May 20 2015 *)
-
PARI
forprime(n=1,1000,if(Mod(ramanujantau(n),n)==1,print1(n,", "))) \\ Dana Jacobsen, Sep 06 2015
-
Perl
use ntheory ":all"; forprimes { say if (ramanujan_tau($) % $) == 1; } 1000; # Dana Jacobsen, Sep 06 2015
Comments