cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

11, 23, 691, 5807
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Nik Lygeros and Olivier Rozier found a new solution to the equation tau(p) + 1 == 0 (mod p) for prime p = 692881373, on September 6 2009. - Seiichi Manyama, Dec 30 2017
a(5) > 8*10^7. - Seiichi Manyama, Jan 01 2018
A superset of A193855. - Jud McCranie, Nov 06 2020

Examples

			tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11.
tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23.
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691.
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020

A262339 Exceptional primes for Ramanujan's tau function.

Original entry on oeis.org

2, 3, 5, 7, 23, 691
Offset: 1

Views

Author

Jonathan Sondow, Sep 18 2015

Keywords

Comments

For each exceptional prime p, Ramanujan's tau function tau(n) = A000594(n) satisfies a simple congruence modulo p.
The main entry for this subject is A000594.
Terms 23 and 691 also appear in A193855. - Jud McCranie, Nov 05 2020

Examples

			691 is an exceptional prime because tau(n) == sum of 11th power of divisors of n mod 691 (see A046694).
		

References

  • H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.

Crossrefs

A296580 Odd primes p such that tau(p) is congruent to (p-1)/2 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

191, 5399, 1259393
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2017

Keywords

Comments

a(4) > 10^7.
There is no odd prime p (< 10^7) such that tau(p) is congruent to (p+1)/2 (mod p).

Examples

			tau(191) = 2762403350592 and 2762403350592 == 95 mod 191, so a(1) = 191.
tau(5399) = -616400667743946780600 and -616400667743946780600 == 2699 mod 5399, so a(2) = 5399.
tau(1259393) = -600367974333827988240021654527358 and -600367974333827988240021654527358 == 629696 mod 1259393, so a(3) = 1259393.
		

Crossrefs

Showing 1-3 of 3 results.