A194274 Concentric square numbers (see Comments lines for definition).
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, 72, 84, 97, 112, 128, 144, 161, 180, 200, 220, 241, 264, 288, 312, 337, 364, 392, 420, 449, 480, 512, 544, 577, 612, 648, 684, 721, 760, 800, 840, 881, 924, 968, 1012, 1057, 1104, 1152, 1200, 1249, 1300, 1352, 1404
Offset: 0
Examples
Using the numbers A008574 we can write: 0, 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, ... 0, 0, 0, 0, 0, 1, 4, 8, 12, 16, 20, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, ... And so on. =========================================== The sums of the columns give this sequence: 0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, ... ... Illustration of initial terms: . o o o o o o . o o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o . . 1 4 8 12 17 24
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 0..10000
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else (n-1)^2 - Self(n-2): n in [1..61]]; // G. C. Greubel, Jan 31 2024
-
Mathematica
Table[Floor[3*n/4] + Floor[(n*(n + 2) + 1)/2] - Floor[(3*n + 1)/4], {n, 0, 52}] (* Arkadiusz Wesolowski, Nov 08 2011 *) RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n^2-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,4,8,12},60] (* Harvey P. Dale, Sep 11 2013 *)
-
Python
prpr = 0 prev = 1 for n in range(2,777): print(str(prpr), end=", ") curr = n*n - prpr prpr = prev prev = curr # Alex Ratushnyak, Aug 03 2012
-
Python
def A194274(n): return (3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2) # Chai Wah Wu, Jul 15 2023
-
SageMath
def A194274(n): return n if n<2 else n^2 - A194274(n-2) [A194274(n) for n in range(41)] # G. C. Greubel, Jan 31 2024
Formula
a(n) = n^2 - a(n-2), with a(0)=0, a(1)=1. - Alex Ratushnyak, Aug 03 2012
From R. J. Mathar, Aug 22 2011: (Start)
G.f.: x*(1 + x)/((1 + x^2)*(1 - x)^3).
a(n) = a(-n-2) = (2*n*(n+2) + (1-(-1)^n)*i^(n+1))/4, where i=sqrt(-1). - Bruno Berselli, Sep 22 2011
a(n) = floor(3*n/4) + floor((n*(n+2)+1)/2) - floor((3*n+1)/4). - Arkadiusz Wesolowski, Nov 08 2011
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5), with a(0)=0, a(1)=1, a(2)=4, a(3)=8, a(4)=12. - Harvey P. Dale, Sep 11 2013
E.g.f.: (exp(x)*x*(3 + x) - sin(x))/2. - Stefano Spezia, Feb 26 2023
Comments