cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A194959 Fractalization of (1 + floor(n/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, 1, 3, 5, 7, 9, 8, 6, 4, 2, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 12, 10, 8, 6, 4, 2, 1, 3, 5
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2011

Keywords

Comments

Suppose that p(1), p(2), p(3), ... is an integer sequence satisfying 1 <= p(n) <= n for n >= 1. Define g(1)=(1) and for n > 1, form g(n) from g(n-1) by inserting n so that its position in the resulting n-tuple is p(n). The sequence f obtained by concatenating g(1), g(2), g(3), ... is clearly a fractal sequence, here introduced as the fractalization of p. The interspersion associated with f is here introduced as the interspersion fractally induced by p, denoted by I(p); thus, the k-th term in the n-th row of I(p) is the position of the k-th n in f. Regarded as a sequence, I(p) is a permutation of the positive integers; its inverse permutation is denoted by Q(p).
...
Example: Let p=(1,2,2,3,3,4,4,5,5,6,6,7,7,...)=A008619. Then g(1)=(1), g(2)=(1,2), g(3)=(1,3,2), so that
f=(1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,1,3,5,6,4,2,1,...)=A194959; and I(p)=A057027, Q(p)=A064578.
The interspersion I(P) has the following northwest corner, easily read from f:
1 2 4 7 11 16 22
3 6 10 15 21 28 36
5 8 12 17 23 30 38
9 14 20 27 35 44 54
...
Following is a chart of selected p, f, I(p), and Q(p):
p f I(p) Q(p)
Count odd numbers up to n, then even numbers down from n. - Franklin T. Adams-Watters, Jan 21 2012
This sequence defines the square array A(n,k), n > 0 and k > 0, read by antidiagonals and the triangle T(n,k) = A(n+1-k,k) for 1 <= k <= n read by rows (see Formula and Example). - Werner Schulte, May 27 2018

Examples

			The sequence p=A008619 begins with 1,2,2,3,3,4,4,5,5,..., so that g(1)=(1). To form g(2), write g(1) and append 2 so that in g(2) this 2 has position p(2)=2: g(2)=(1,2). Then form g(3) by inserting 3 at position p(3)=2: g(3)=(1,3,2), and so on. The fractal sequence A194959 is formed as the concatenation g(1)g(2)g(3)g(4)g(5)...=(1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,...).
From _Werner Schulte_, May 27 2018: (Start)
This sequence seen as a square array read by antidiagonals:
  n\k: 1  2  3  4  5   6   7   8   9  10  11  12 ...
  ===================================================
   1   1  2  2  2  2   2   2   2   2   2   2   2 ... (see A040000)
   2   1  3  4  4  4   4   4   4   4   4   4   4 ... (see A113311)
   3   1  3  5  6  6   6   6   6   6   6   6   6 ...
   4   1  3  5  7  8   8   8   8   8   8   8   8 ...
   5   1  3  5  7  9  10  10  10  10  10  10  10 ...
   6   1  3  5  7  9  11  12  12  12  12  12  12 ...
   7   1  3  5  7  9  11  13  14  14  14  14  14 ...
   8   1  3  5  7  9  11  13  15  16  16  16  16 ...
   9   1  3  5  7  9  11  13  15  17  18  18  18 ...
  10   1  3  5  7  9  11  13  15  17  19  20  20 ...
  etc.
This sequence seen as a triangle read by rows:
  n\k:  1  2  3  4  5   6   7   8   9  10  11  12  ...
  ======================================================
   1    1
   2    1  2
   3    1  3  2
   4    1  3  4  2
   5    1  3  5  4  2
   6    1  3  5  6  4   2
   7    1  3  5  7  6   4   2
   8    1  3  5  7  8   6   4   2
   9    1  3  5  7  9   8   6   4   2
  10    1  3  5  7  9  10   8   6   4   2
  11    1  3  5  7  9  11  10   8   6   4   2
  12    1  3  5  7  9  11  12  10   8   6   4   2
  etc.
(End)
		

References

  • Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Cf. A000142, A000217, A005408, A005843, A008619, A057027, A064578, A209229, A210535, A219977; A000012 (col 1), A157532 (col 2), A040000 (row 1), A113311 (row 2); A194029 (introduces the natural fractal sequence and natural interspersion of a sequence - different from those introduced at A194959).
Cf. A003558 (g permutation order), A102417 (index), A330081 (on bits), A057058 (inverse).

Programs

  • Mathematica
    r = 2; p[n_] := 1 + Floor[n/r]
    Table[p[n], {n, 1, 90}]  (* A008619 *)
    g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
    f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
    f[20] (* A194959 *)
    row[n_] := Position[f[30], n];
    u = TableForm[Table[row[n], {n, 1, 5}]]
    v[n_, k_] := Part[row[n], k];
    w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A057027 *)
    q[n_] := Position[w, n]; Flatten[
    Table[q[n], {n, 1, 80}]]  (* A064578 *)
    Flatten[FoldList[Insert[#1, #2, Floor[#2/2] + 1] &, {}, Range[10]]] (* Birkas Gyorgy, Jun 30 2012 *)
  • PARI
    T(n,k) = min(k<<1-1,(n-k+1)<<1); \\ Kevin Ryde, Oct 09 2020

Formula

From Werner Schulte, May 27 2018 and Jul 10 2018: (Start)
Seen as a triangle: It seems that the triangle T(n,k) for 1 <= k <= n (see Example) is the mirror image of A210535.
Seen as a square array A(n,k) and as a triangle T(n,k):
A(n,k) = 2*k-1 for 1 <= k <= n, and A(n,k) = 2*n for 1 <= n < k.
A(n+1,k+1) = A(n,k+1) + A(n,k) - A(n-1,k) for k > 0 and n > 1.
A(n,k) = A(k,n) - 1 for n > k >= 1.
P(n,x) = Sum_{k>0} A(n,k)*x^(k-1) = (1-x^n)*(1-x^2)/(1-x)^3 for n >= 1.
Q(y,k) = Sum_{n>0} A(n,k)*y^(n-1) = 1/(1-y) for k = 1 and Q(y,k) = Q(y,1) + P(k-1,y) for k > 1.
G.f.: Sum_{n>0, k>0} A(n,k)*x^(k-1)*y^(n-1) = (1+x)/((1-x)*(1-y)*(1-x*y)).
Sum_{k=1..n} A(n+1-k,k) = Sum_{k=1..n} T(n,k) = A000217(n) for n > 0.
Sum_{k=1..n} (-1)^(k-1) * A(n+1-k,k) = Sum_{k=1..n} (-1)^(k-1) * T(n,k) = A219977(n-1) for n > 0.
Product_{k=1..n} A(n+1-k,k) = Product_{k=1..n} T(n,k) = A000142(n) for n > 0.
A(n+m,n) = A005408(n-1) for n > 0 and some fixed m >= 0.
A(n,n+m) = A005843(n) for n > 0 and some fixed m > 0.
Let A_m be the upper left part of the square array A(n,k) with m rows and m columns. Then det(A_m) = 1 for some fixed m > 0.
The P(n,x) satisfy the recurrence equation P(n+1,x) = P(n,x) + x^n*P(1,x) for n > 0 and initial value P(1,x) = (1+x)/(1-x).
Let B(n,k) be multiplicative with B(n,p^e) = A(n,e+1) for e >= 0 and some fixed n > 0. That yields the Dirichlet g.f.: Sum_{k>0} B(n,k)/k^s = (zeta(s))^3/(zeta(2*s)*zeta(n*s)).
Sum_{k=1..n} A(k,n+1-k)*A209229(k) = 2*n-1. (conjectured)
(End)
From Kevin Ryde, Oct 09 2020: (Start)
T(n,k) = 2*k-1 if 2*k-1 <= n, or 2*(n+1-k) if 2*k-1 > n. [Lévy, chapter 1 section 1 equations (a),(b)]
Fixed points T(n,k)=k for k=1 and k = (2/3)*(n+1) when an integer. [Lévy, chapter 1 section 2 equation (3)]
(End)

Extensions

Name corrected by Franklin T. Adams-Watters, Jan 21 2012

A194960 a(n) = floor((n+2)/3) + ((n-1) mod 3).

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12, 11, 12, 13, 12, 13, 14, 13, 14, 15, 14, 15, 16, 15, 16, 17, 16, 17, 18, 17, 18, 19, 18, 19, 20, 19, 20, 21, 20, 21, 22, 21, 22, 23, 22, 23, 24, 23, 24, 25, 24, 25, 26, 25, 26
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2011

Keywords

Comments

The sequence is formed by concatenating triples of the form (n, n+1, n+2) for n>=1. See A194961 and A194962 for the associated fractalization and interspersion. The sequence can be obtained from A008611 by deleting its first four terms.
The sequence contains every positive integer n exactly min(n,3) times. - Wesley Ivan Hurt, Dec 17 2013

Crossrefs

Programs

  • Magma
    I:=[1,2,3,2]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..100]]; // Vincenzo Librandi, Dec 17 2013
    
  • Maple
    A194960:=n->floor((n+2)/3)+((n-1) mod 3); seq(A194960(n), n=1..100); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    (* First program *)
    p[n_]:= Floor[(n+2)/3] + Mod[n-1, 3]
    Table[p[n], {n, 1, 90}]  (* A194960 *)
    g[1] = {1}; g[n_]:= Insert[g[n-1], n, p[n]]
    f[1] = g[1]; f[n_]:= Join[f[n-1], g[n]]
    f[20]  (* A194961 *)
    row[n_]:= Position[f[30], n];
    u = TableForm[Table[row[n], {n, 1, 5}]]
    v[n_, k_]:= Part[row[n], k];
    w = Flatten[Table[v[k, n-k+1], {n, 1, 13}, {k, 1, n}]]  (* A194962 *)
    q[n_]:= Position[w, n];
    Flatten[Table[q[n], {n, 1, 80}]]  (* A194963 *)
    (* Other programs *)
    CoefficientList[Series[(1 +x +x^2 -2 x^3)/((1+x+x^2) (1-x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 17 2013 *)
    Table[(n+4 -2*ChebyshevU[2*n+4, 1/2])/3, {n,80}] (* G. C. Greubel, Oct 23 2022 *)
  • PARI
    a(n)=(n+2)\3 + (n-1)%3 \\ Charles R Greathouse IV, Sep 02 2015
    
  • SageMath
    [(n+4 - 2*chebyshev_U(2*n+4, 1/2))/3 for n in (1..80)] # G. C. Greubel, Oct 23 2022

Formula

From R. J. Mathar, Sep 07 2011: (Start)
a(n) = ((-1)^n*A130772(n) + n + 4)/3.
G.f.: x*(1 + x + x^2 - 2*x^3)/((1+x+x^2)*(1-x)^2). (End)
a(n) = A006446(n)/floor(sqrt(A006446(n))). - Benoit Cloitre, Jan 15 2012
a(n) = a(n-1) + a(n-3) - a(n-4). - Vincenzo Librandi, Dec 17 2013
a(n) = a(n-3) + 1, n >= 1, with input a(-2) = 0, a(-1) = 1 and a(0) = 2. Proof trivial. a(n) = A008611(n+3), n >= -2. See the first comment above. - Wolfdieter Lang, May 06 2017
From Guenther Schrack, Nov 09 2020: (Start)
a(n) = n - 2*floor((n-1)/3).
a(n) = (n + 2 + 2*((n-1) mod 3))/3.
a(n) = (3*n + 12 + 2*(w^(2*n)*(1 - w) + w^n*(2 + w)))/9, where w = (-1 + sqrt(-3))/2.
a(n) = (n + 4 + 2*A049347(n))/3.
a(n) = (2*n + 3 - A330396(n-1))/3. (End)
a(n) = (n + 4 - 2*A010892(2*n+4))/3. - G. C. Greubel, Oct 23 2022

A194961 Fractalization of A194960.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 1, 4, 5, 2, 3, 1, 4, 5, 6, 2, 3, 1, 4, 7, 5, 6, 2, 3, 1, 4, 7, 8, 5, 6, 2, 3, 1, 4, 7, 8, 9, 5, 6, 2, 3, 1, 4, 7, 10, 8, 9, 5, 6, 2, 3, 1, 4, 7, 10, 11, 8, 9, 5, 6, 2, 3, 1, 4, 7, 10, 11, 12, 8, 9, 5, 6, 2, 3, 1, 4, 7, 10, 13, 11, 12, 8, 9, 5, 6, 2, 3, 1, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2011

Keywords

Comments

See A194959 for a discussion of fractalization.

Crossrefs

Programs

  • Mathematica
    p[n_] := Floor[(n + 2)/3] + Mod[n - 1, 3]
    Table[p[n], {n, 1, 90}]  (* A194960 *)
    g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
    f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
    f[20]  (* A194961 *)
    row[n_] := Position[f[30], n];
    u = TableForm[Table[row[n], {n, 1, 5}]]
    v[n_, k_] := Part[row[n], k];
    w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A194962 *)
    q[n_] := Position[w, n]; Flatten[
    Table[q[n], {n, 1, 80}]]  (* A194963 *)

A194962 Interspersion fractally induced by A194960.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 11, 14, 15, 12, 13, 16, 20, 21, 17, 18, 19, 22, 27, 28, 23, 25, 26, 24, 29, 35, 36, 30, 33, 34, 31, 32, 37, 44, 45, 38, 42, 43, 39, 40, 41, 46, 54, 55, 47, 52, 53, 48, 50, 51, 49, 56, 65, 66, 57, 63, 64, 58, 61, 62, 59, 60, 67, 77, 78, 68, 75, 76, 69, 73, 74, 70, 71, 72
Offset: 1

Views

Author

Clark Kimberling, Sep 07 2011

Keywords

Comments

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.

Examples

			Northwest corner:
   1...2...4...7..11..16..22
   3...5...9..14..20..27..35
   6..10..15..21..28..36..45
   8..12..17..23..30..38..47
  18..13..25..33..42..52..63
Antidiagonals of the array:
   1;
   2,  3;
   4,  5,  6;
   7,  9, 10,  8;
  11, 14, 15, 12, 13;
  16, 20, 21, 17, 18, 19;
  22, 27, 28, 23, 25, 26, 24;
  29, 35, 36, 30, 33, 34, 31, 32;
  37, 44, 45, 38, 42, 43, 39, 40, 41;
		

Crossrefs

Programs

  • Mathematica
    p[n_] := Floor[(n + 2)/3] + Mod[n - 1, 3]
    Table[p[n], {n, 1, 90}]  (* A194960 *)
    g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
    f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
    f[20]  (* A194961 *)
    row[n_] := Position[f[30], n];
    u = TableForm[Table[row[n], {n, 1, 5}]]
    v[n_, k_] := Part[row[n], k];
    w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A194962 *)
    q[n_] := Position[w, n]; Flatten[
    Table[q[n], {n, 1, 80}]]  (* A194963 *)
Showing 1-4 of 4 results.